
Visual Studio Magazine Online

Classic VB Corner

Inside Alternative Data Streams
NTFS offers an almost unknown way to obscure streams of data behind the most
innocent looking files. Find out how to do this with VB6.
November 3, 2009 · by Karl E. Peterson

NTFS, the file system of choice on most machines these days, offers something called
Alternate Data Streams (ADS) to tuck data away, out of sight from most users. If you
search for ADS, you'll see that these neat little payloads are the current rage of the
security crowd. As they were five years ago. And before that, too. They certainly are
eye-opening, the first time you run into them.

The NTFS file system (do you hate redundancies like that as much as I do?) supports
multiple streams of data within each file and folder, and has been around since the
introduction of Windows NT. It was originally meant to provide some level of
compatibility with HFS, the old Macintosh Hierarchical File System. It's somewhat
ironic that the FAT32 thumb drives many folks carry around don't support ADS, but do
offer cross-platform capabilities with today's Apple computers.

Under FAT32, the file system stores the filename and extension, its associated
attributes, and the file's data. In NTFS, the file system of course also stores the
filename and extension, security attributes, the main stream of file data, and
optionally many other alternate streams of data as well. The main data stream is
unnamed, but each of the alternate streams goes by its own name.

Working with ADS
To specify an ADS, you simply append a colon to the file name and follow that with
the stream name. Each stream, including the main one, also carries a totally
superfluous extension, ":$DATA", which may be freely omitted when referencing a
stream. The gritty details are all available through Google, but the important thing to
be aware of is that most VB file I/O functionality works perfectly fine with streams.

There are a few areas where native VB needs a little augmentation from Windows,
however. Foremost among them would be the enumeration of ADS within any given
file or folder. I've created a drop-in ready CStreams class, suitable for VB5/VB6/VBA,
which you may download from the Streams sample on my website. CStreams provides
an enumeration of all the streams, and their sizes, within any file or folder. It must be
said, though, that ADS within folders require an extra level of permissions to get into.
More on that in a bit.

So let's get right into it. Here's the CStreams.Refresh method. This is called as
needed, after the class has been handed a file name to work with, and has used
GetVolumeInformation to determine the file does indeed reside on an NTFS volume.

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

http://visualstudiomagazine.com/
http://www.google.com/search?q=%22alternate+data+streams%22
http://vb.mvps.org/samples/Streams
http://msdn.microsoft.com/en-us/library/aa364993%28VS.85%29.aspx

Public Sub Refresh()
 Dim hFile As Long
 Dim ioStatus As IO_STATUS_BLOCK
 Dim InfoBlock() As Byte
 Dim BlockSize As Long
 Dim Flags As Long
 Dim nRet As Long

 ' Reset cached values.
 m_Count = 0

 ' Streams not available for folders unless
 ' process has backup privilege.
 If IsFolder(m_FileName) Then
 If BackupPrivs(True) = False Then Exit Sub
 Flags = FILE_FLAG_BACKUP_SEMANTICS
 End If

 ' Attempt to read stream names by building progressively
 ' larger buffer until sufficient to contain all data.
 hFile = CreateFile(m_FileName, 0&, FILE_SHARE_READ, _
 ByVal 0&, OPEN_EXISTING, Flags, 0&)
 If hFile <> INVALID_HANDLE_VALUE Then
 BlockSize = 1024
 Do
 ReDim InfoBlock(0 To BlockSize - 1) As Byte
 nRet = NtQueryInformationFile(hFile, ioStatus, _
 InfoBlock(0), BlockSize, FileStreamInformation)
 Select Case nRet
 Case STATUS_SUCCESS
 If ioStatus.Information Then
 Call GetStreams(InfoBlock())
 End If
 Case STATUS_BUFFER_OVERFLOW
 BlockSize = BlockSize * 2
 Case Else
 Debug.Print "NtQueryInformationFile failed: &h" _
 & Hex$(nRet), BlockSize
 End Select
 Loop While nRet = STATUS_BUFFER_OVERFLOW

 ' Release open file handle.
 Call CloseHandle(hFile)

 ' Restore prior process privileges.
 If CBool(Flags And FILE_FLAG_BACKUP_SEMANTICS) Then
 Call BackupPrivs(False)
 End If
 End If
End Sub

Let's skip over the backup semantics necessary for folders, for a moment.
Enumerating ADS requires a call to the only-recently documented (and rather sparsely
at that) NtQueryInformationFile API function, requesting a memory block that
contains all the stream information. In order to make this call, we first must obtain an
API-based file handle using CreateFile to open the existing file.

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

http://msdn.microsoft.com/en-us/library/dd445626.aspx
http://msdn.microsoft.com/en-us/library/aa363858%28VS.85%29.aspx

Once we have the file handle, we create what we hope to be an adequate-sized buffer
for NtQueryInformationFile to stuff and give that a shot. If there are a lot of ADS
within the file in question, the buffer may need to be expanded until it is sufficiently
sized to hold all the requested information. We then begin the happy task of picking
apart the buffer to obtain the information we sought. Each ADS within the file is
identified within the buffer with a structure that looks roughly like this:

Private Type FILE_STREAM_INFORMATION
 NextEntryOffset As Long
 StreamNameLength As Long
 StreamSize As LARGE_INTEGER
 StreamAllocationSize As LARGE_INTEGER
 StreamName As String
End Type

I say "roughly" because Windows doesn't do strings quite the way VB does. What we
really have are just the raw Unicode bytes laid out in order, and we can extract the
StreamName string directly using a bit of math to calculate its offset and the length
provided in the StreamNameLength element. Walking through this InfoBlock is just
this simple:

Private Sub GetStreams(InfoBlock() As Byte)
 Dim nIndex As Long
 Dim lpBlock As Long

 ' Reset count to zero, and walk through information block.
 m_Count = 0
 nIndex = LBound(InfoBlock)
 Do
 ' Expand persisted storage for stream information
 ReDim Preserve m_Streams(0 To m_Count) _
 As FILE_STREAM_INFORMATION

 With m_Streams(m_Count)
 ' Calculate pointer to beginning of this block.
 lpBlock = VarPtr(InfoBlock(nIndex))

 ' Find offset to next record.
 .NextEntryOffset = PointerToDWord(lpBlock)

 ' Read each of the remaining attributes for this stream.
 .StreamNameLength = PointerToDWord(lpBlock + 4)
 .StreamSize = PointerToLargeInt(lpBlock + 8)
 .StreamAllocationSize = PointerToLargeInt(lpBlock + 16)
 If .StreamNameLength Then
 .StreamName = PointerToStringW(lpBlock + 24, _
 .StreamNameLength)
 End If

 ' Increment count of streams.
 m_Count = m_Count + 1

 ' Bump up buffer pointer to next record.
 If .NextEntryOffset Then
 nIndex = nIndex + .NextEntryOffset
 Else
 Exit Do

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

 End If
 End With
 Loop
End Sub

The only way to know when you've iterated through the entire returned structure will
be that the NextEntryOffset element of the current item is 0. Unlike files, which
always contain a default unnamed ADS, it's possible that there are no ADS at all in
folders, so you need to be prepared for this scenario. I chose to bail in the Refresh
method, if the returned ioStatus structure indicated no data had been returned, as
this allowed a single GetStreams routine to work with both files and folders.

Now, as I said, your application will require the SE_BACKUP_NAME privilege in order
to enumerate ADS in folders. This may be an issue in least-privileged user situations.
Luckily, file ADS provides nearly all the opportunity you'll likely need, so it will be the
rather rare case indeed where this matters. In order to elevate your application to this
privilege level, you need to invoke a few more APIs:

Private Function BackupPrivs(ByVal Enable As Boolean) As Boolean
 Dim hProcess As Long
 Dim DesiredAccess As Long
 Dim hToken As Long
 Dim tkp As TOKEN_PRIVILEGES
 Dim nRet As Long

 ' Cache a copy of priviliges as we found them.
 Static bup As TOKEN_PRIVILEGES

 ' Get psuedohandle to current process.
 hProcess = GetCurrentProcess()
 ' Ask for handle to query and adjust process tokens.
 DesiredAccess = TOKEN_QUERY Or TOKEN_ADJUST_PRIVILEGES
 If OpenProcessToken(hProcess, DesiredAccess, hToken) Then
 ' Get LUID for backup privilege name.
 If LookupPrivilegeValue(vbNullString, SE_BACKUP_NAME, _
 tkp.LUID) Then
 If Enable Then
 ' Enable the backup priviledge.
 tkp.PrivilegeCount = 1
 tkp.Attributes = SE_PRIVILEGE_ENABLED
 If AdjustTokenPrivileges(hToken, False, tkp, _
 Len(bup), bup, nRet) Then
 BackupPrivs = True
 End If
 Else
 ' Restore prior backup privilege setting.
 If AdjustTokenPrivileges(hToken, False, bup, 0&, _
 ByVal 0&, nRet) Then
 BackupPrivs = True
 End If
 End If
 End If
 ' Clean up token handle.
 Call CloseHandle(hToken)
 End If
End Function

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

I built this routine so it could work as a toggle, requesting and restoring privileges as
needed. It does this by storing the previous privilege state in a static
TOKEN_PRIVILEGES structure between calls. Please realize that this design is
somewhat fragile, as there are no checks to insure you are going T-F-T-F-T-F rather
than T-T-F-T-T-F, or following some other non-regular pattern. Worst case, though,
that would simply mean your application would never back down its elevated privilege
level, which probably won't be too dire a situation.

I said earlier that most normal VB file I/O methods will work just fine with ADS. One
that doesn't is Kill, which returns an error 53 (File not found) if you pass it an ADS
name. To overcome that limitation, I've added a KillStream method to the CStream
class which uses the DeleteFile API directly:

Public Function KillStream(ByVal Index As Long) As Boolean
 If Index >= 0 And Index < m_Count Then
 ' Whack-a-Mole! VB's Kill triggers an error 53.
 KillStream = CBool(DeleteFile(m_FileName & _
 m_Streams(Index).StreamName))
 End If
End Function

Just to show you how easy it is to use and abuse ADS, consider this simple little
scenario:

Public Sub Main()
 Call WriteFile("C:\test.txt", "This is a normal data stream.")
 If WriteFile("C:\test.txt:MyADS", "This is an ADS.") Then
 Debug.Print ReadFile("C:\test.txt:MyADS")
 End If
End Sub

Public Function ReadFile(ByVal FileName As String) As String
 Dim hFile As Long
 On Error GoTo Hell
 hFile = FreeFile
 Open FileName For Binary As #hFile
 ReadFile = Space$(LOF(hFile))
 Get #hFile, , ReadFile
 Close #hFile
Hell:
End Function

Public Function WriteFile(ByVal FileName As String, _
 ByVal Text As String) As Boolean
 Dim hFile As Long
 On Error GoTo Hell
 hFile = FreeFile
 Open FileName For Output As #hFile
 Print #hFile, Text;
 Close #hFile
Hell:
 WriteFile = Not CBool(Err.Number)
End Function

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

What do you suppose shows up in the Immediate window? Yep, it's that easy! And
note that this is without any sort of supporting CStreams class, or anything else I've
written about, whatsoever. And it will be the rare user indeed that ever notices that
extra ":MyADS:$DATA" stream tacked onto their formerly innocent little text file.

Be Careful Out There
If you're still having trouble imagining what you might do with ADS, take a look at
your own hard drive. The Streams sample on my website provides a little tool that will
recursively drill through a directory hierarchy, and provide you with a listing of all the
files that contain ADS content.

Ever wonder how Windows knows to pester you about running that EXE you
downloaded? Each one of them is tagged with an ADS named "Zone.Identifier", which
becomes a tag-along INI file the system may query at will. How about those pesky
thumbnails Windows wants to persist for all your image files? You may be shocked if
you enumerate your "My Pictures" folder with my Streams tool. If you right-click on a
text file, select Properties, and edit a few of the fields on the Summary tab, any
guesses where that info is stored?

It's no wonder the security freaks are freaked out by these critters! These aren't your
ordinary boogeyman-type threats. ADS are literally everywhere. They travel almost
invisibly, only going away when their host file is transferred to a non-NTFS file
system. And, very darn few users have any concept of ADS whatsoever. Handle with
care.

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/Articles/2009/11/03/Inside-Alternative-Data-Streams.aspx

http://vb.mvps.org/samples/Streams
http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

