
Visual Studio Magazine Online

Classic VB Corner

Reacting to the Mousewheel
ONLINE ONLY
ClassicVB was created in a pre-Mousewheel era, hard as that may be to conceive.
Here’s how you can watch for, and react to, the user spinning that now-ubiquitous
device.
August 11, 2009 · by Karl E. Peterson

Can you handle yet another article on cool tricks you can do with
SetWindowsSubclass, which has rapidly become my shiniest new toy? This one's
about watching for mousewheel messages. Again, we'll write a drop-in ready class
that takes advantage of the HookXP infrastructure I wrote up a short while ago.

Plop the CHookMouseWheel class into a project right alongside any of the others I've
already written about and it just works. Setting-up the class is as simple as declaring
an instance using WithEvents and handing the host form's hWnd off to begin
processing:

Private WithEvents m_MW As CHookMouseWheel

Private Sub Form_Load()
 ' Delegate mousewheel handling to class.
 Set m_MW = New CHookMouseWheel
 m_MW.hWnd = Me.hWnd
End Sub

The history of mouse wheel support is pretty ragged. Originally, Windows 95 support
was non-existent -- only Intellipoint provided a registered message to work with it.
Windows 98 and Windows NT 4.0 added some native support, in the form of
WM_MOUSEWHEEL messages. Much later, a new message was added for horizontal
scrolling. Since so few controls knew about these messages initially, Microsoft adopted
the strategy of sending the same message to a window's parent if the window that
initially got the message failed to respond to it. Therein lays our opportunity.

We can hook the message stream for a form, and sink mouse wheel messages for all
the controls that don't process these messages themselves. I haven't spent any
serious time looking at these messages in close to a decade, and was actually caught
by surprise that many of the intrinsic VB controls have acquired mouse wheel smarts
as the years have gone by. This can only be because the underlying base class was
updated, but it's fun to see that in XP almost all of them work just fine. Others, like
the native scrollbar controls, still need a power boost.

Details on interpreting the WM_MOUSEWHEEL message are all over the Internet, but
as a refresher here's how I handle it (complete Classic VB source) in my
IHookXP_Message method:

http://visualstudiomagazine.com/articles/2009/08/11/reacting-to-the-mousewheel.aspx

http://visualstudiomagazine.com/
http://msdn.microsoft.com/en-us/library/bb762102%28VS.85%29.aspx
http://visualstudiomagazine.com/Articles/2009/07/16/Subclassing-the-XP-Way.aspx
http://msdn.microsoft.com/en-us/library/ms645617%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms997498.aspx
http://vb.mvps.org/samples/HookXP/

Private Function IHookXP_Message(ByVal hWnd As Long, _
 ByVal uiMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long, ByVal dwRefData As Long) As Long

 Dim EatIt As Boolean
 Dim Delta As Long
 Dim pt As POINTAPI
 Dim hWndOver As Long
 Dim Button As Long
 Dim Shift As Long
 Dim Cancel As Boolean

 ' Special processing for messages we care about.
 Select Case uiMsg
 Case WM_MOUSEWHEEL, WM_MOUSEHWHEEL
 If m_Enabled Then
 ' Gather all available information about event.
 Button = ReadButtonStates()
 Shift = ReadKeyStates()
 Delta = WordHi(wParam)
 pt.X = WordLo(lParam)
 pt.Y = WordHi(lParam)
 hWndOver = WindowFromPoint(pt.X, pt.Y)

 ' Alert client that wheel event occurred.
 If uiMsg = WM_MOUSEWHEEL Then
 RaiseEvent MouseWheel(hWndOver, _
 Delta, Shift, Button, pt.X, pt.Y, Cancel)
 Else
 RaiseEvent MouseHWheel(hWndOver, _
 Delta, Shift, Button, pt.X, pt.Y, Cancel)
 End If

 ' Fire default handler, just in case, but tell Windows
 ' that we handled it regardless. VB Forms don't react
 ' at all to these messages, but the baseclass for some
 ' controls (eg, textbox) will use it, so it depends on
 ' what the client is subclassing how this will play.
 If Cancel = False Then
 Call HookDefault(hWnd, uiMsg, wParam, lParam)
 End If
 IHookXP_Message = 1 'True
 EatIt = True
 End If

 Case WM_NCDESTROY
 Call Unhook ' !!!
 End Select

 ' Pass back to default message handler.
 If EatIt = False Then
 IHookXP_Message = HookDefault(hWnd, uiMsg, wParam, lParam)
 End If
End Function

Be sure to read my earlier Subclassing the XP Way article for a full background on
how that fits into the technique I've developed to allow multiple message handlers for
any window in your app.

http://visualstudiomagazine.com/articles/2009/08/11/reacting-to-the-mousewheel.aspx

http://visualstudiomagazine.com/Articles/2009/07/16/Subclassing-the-XP-Way.aspx

So, now that you have a way to watch for all the mouse wheel messages that fall
through the cracks, you need to consider how to handle them when they arrive. If you
see a mouse wheel message, in this scheme, it means the control with focus and/or
under the cursor didn't react to it. The native scrollbar controls are a good example of
this non-functionality. Here's one approach you may want to consider:

Private Sub m_MW_MouseWheel(ByVal hWnd As Long, _
 ByVal Delta As Long, ByVal Shift As Long, _
 ByVal Button As Long, ByVal X As Long, _
 ByVal Y As Long, Cancel As Boolean)
 Call AutoScroll(hWnd, Delta, Shift)
End Sub

Private Sub AutoScroll(ByVal hWnd As Long, _
 ByVal Delta As Long, ByVal Shift As Long)

 Dim obj As Object
 ' See what sort of object this handle belongs to,
 ' and act accordingly if it's a scrollbar.
 Set obj = hWndToObject(hWnd)
 If obj Is Nothing Then Exit Sub
 ' If the object is a form, use active control instead.
 If TypeOf obj Is Form Then
 Set obj = obj.ActiveControl
 End If
 ' Act appropriately, if we have a scrollbar.
 Select Case TypeName(obj)
 Case "HScrollBar", "VScrollBar"
 With obj
 On Error Resume Next
 If Shift = vbShiftMask Then
 .Value = .Value + -Sgn(Delta) * .LargeChange
 Else
 .Value = .Value + -Sgn(Delta) * .SmallChange
 End If
 End With
 End Select
End Sub

Here, I've written an AutoScroll routine that first determines what sort of control was
passed to it, based on the hWnd. Then, if the control is either a vertical or horizontal
scrollbar, it adjusts its Value property based on how much the user spun the mouse
wheel. The Delta parameter indicates magnitude and direction, with a positive value
indicating the wheel was scrolled forward and a negative value indicating the wheel
was scrolled backward. It will also be a greater absolute value based on how far the
wheel was turned.

In this case, I simply decided to use the sign to indicate direction, and based
magnitude on whether or not the user was depressing the Shift key. If not, the
scrollbar's Value was incremented by SmallChange, and if Shift was pressed a
LargeChange was notched instead. You can make decisions like this based entirely on
how it makes most sense within your own application. You could, of course, add other
control types to the Select Case block, and handle any variety of controls in a similar
manner.

http://visualstudiomagazine.com/articles/2009/08/11/reacting-to-the-mousewheel.aspx

Converting hWnd to Control Reference
So how did I come to know the passed hWnd was a native scrollbar? I had to devise a
small set of utility functions that would accept an hWnd and quickly scan the current
project for a match. I found situations where I needed to know different sorts of
information about the window an hWnd pointed to, so I wrote routines that would
return an object's Name, an object's TypeName, or a reference to the object itself:

Private Function hWndToObject(ByVal hWnd As Long) As Object
 Dim frm As Form, ctl As Control
 ' Loop all forms and controls in project, looking for a match.
 For Each frm In Forms
 If frm.hWnd = hWnd Then
 Set hWndToObject = frm
 Exit Function
 Else
 On Error Resume Next
 For Each ctl In frm.Controls
 If ctl.hWnd = hWnd Then
 Set hWndToObject = ctl
 Exit Function
 End If
 Next ctl
 On Error GoTo 0
 End If
 Next frm
End Function

Private Function hWndToName(ByVal hWnd As Long) As String
 Dim obj As Object
 Set obj = hWndToObject(hWnd)
 On Error Resume Next
 hWndToName = obj.Name
End Function

Private Function hWndToType(ByVal hWnd As Long) As String
 Dim obj As Object
 Set obj = hWndToObject(hWnd)
 hWndToType = TypeName(obj)
End Function

In order to determine either the Name or TypeName of an object, you first need to
obtain a reference to the object itself, so that's always the first step. The
hWndToObject function above works by simply iterating all the controls on all forms in
the current application until a match is found. Note the routine isn't limited to controls
alone, but also considers whether each form's hWnd is a match.

Given that foundation, the process of determining either Name or TypeName is child's
play. Both the hWndToName and hWndToType functions work by calling
hWndToObject first, then testing for the desired properties. Error trapping is a must to
avoid asking for, say, an hWnd of a windowless control.

I've expanded the HookXP sample on my site to include this new demo of mouse
wheel processing. As always when subclassing with native code, be safe. Unhandled
errors can be deadly. Save before running.

http://visualstudiomagazine.com/articles/2009/08/11/reacting-to-the-mousewheel.aspx

http://vb.mvps.org/samples/HookXP

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2009/08/11/reacting-to-the-mousewheel.aspx

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

