

SEPTEMBER 2001 Supplement to Visual Studio Magazine 1

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

Welcome to the First Edition of the
VSM Technical Tips Supplement!

The editors of Visual Studio Magazine are pleased to

bring you these invaluable tips, techniques, and

workarounds, submitted and reviewed by profes-
sional developers. Instead of typing the code pub-

lished here, download the tips for free from the VSM

Web site at www.vbpj.com or www.vcdj.com.
We know you’ve uncovered your own tips and

tricks—send them to us at vsmtips@fawcette.com.

Include a clear explanation of what the technique
does, why it’s useful, and what language(s) and

version(s) it applies to. Please limit code length to

20 lines. Don’t forget to include your mailing ad-
dress, and let us know your compensation prefer-

ence per published tip: $25, a new one-year VSM

subscription, or a one-year extension to your exist-
ing VSM subscription.

VB.NET
Level: Intermediate

Return Strings From an API
In .NET, strings are immutable: When you pass them out to an API,
you can’t modify them. However, VB.NET applies the VBByRefStr
unmanaged type-marshaling attribute to the string. This allows
VB.NET to create a temporary buffer, copy that back to a new
string, then point the original string to the new string:

Public Declare Function GetWindowText _
Lib "User32.Dll" _
(ByVal hwnd As Int32, _
ByVal lpString As String, _
ByVal cch As Int32) As Int32

To use this declaration, simply initialize the string to the right size:

Dim s As String = Space(256)
Dim rtn as Int32 = GetWindowText(hwnd, s, 256)

The API declaration is equivalent to:

Public Declare Function GetWindowText _
Lib "User32.Dll" (ByVal hwnd As Int32, _
<System.Runtime.InteropServices.MarshalAs(_
Runtime.InteropServices.UnmanagedType.VBByRefStr)> _
ByRef lpString As String, _
ByVal cch As Int32) As Int32

VB.NET, however, doesn’t allow you to specify that marshaling
attribute on parameters, so you must use the first declaration. Use
a StringBuilder object as an alternative to using the VBByRefStr
attribute.

—Bill McCarthy, Barongarook, Victoria, Australia

VB4, VB5, VB6
Level: Beginning

Count the Number of Elements in an Array
This function computes the number of elements of any one-
dimensional array—it sure beats ripping open the SAFEARRAY
array descriptor. Use it when you’re not sure whether an array is
one- or zero-based:

Public Function CountElements(_
ByVal SimpleArray As Variant) As Long
' Ignore error if array not dimensioned
On Error Resume Next
If Not IsArray(SimpleArray) Then Exit Function
CountElements = Abs((LBound(SimpleArray)) - _

(UBound(SimpleArray))) + 1
End Function

—Monte Hansen, Ripon, Calif.

VB4/32, VB5, VB6
Level: Beginning

Extend Registry Functionality
An (undocumented) feature of VB’s native *Setting Registry func-
tions is that they can create and access multilayer hierarchies such
as this:

VB and VBA Project Settings
Application

Plugin
Section

Subsection
Key = "Value"

You can do this easily—simply add a “\” character between the
parent entry and its child entry. Then you can use the Registry as
you’d use a folder with subfolders. Check out these code examples
that create and read structures such as the preceding one:

Call SaveSetting("Application\Plugin", _
"Section\Subsection", "Key", "Value")

.Print SaveSetting("Application\Plugin\Section", _
" Subsection", "Key", "Value")

—Chris Hynes, Fort Washington, Md.

C#
Level: Beginning

Use String Literals to Simplify Paths
When you need to set a string to a local or network path, use a
string literal to avoid writing repeating backslashes. For instance,
this code:

string sLocalPath = "C:\\directory\\file.txt";
string sNetworkPath =
"\\\\machinename\\directory\\file.txt";

Becomes this:

string sLocalPath = @"C:\directory\file.txt";
string sNetworkPath =
@"\\machinename\directory\file.txt";

—Robert Lair, Springboro, Ohio

2 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB5, VB6
Level: Beginning

Let VB Spell the Control Name for You
I love the way VB’s IntelliSense drops down a list of control names,
properties, and methods as soon as I type the period after the
object’s name. But when you’re coding in a form’s own module and
referencing the control name directly, without an object qualifier,
you can still get that cool dropdown list. First type “Me.” (with the
period) and pick the name. Feel free to delete the “Me.” qualifier
later. Here’s an example:

Call clsDatabase.LoadMyListBox(Me.MylistBox)

—Frank Ramage, Laurel, Md.

VB4/32, VB5, VB6, VBS, SQL 7.0 and up
Level: Intermediate

Preprocess Nulls in Your Recordset
I’ve seen several examples of VB code dealing with nulls in
recordsets before the value is assigned to a VB control. I often use
the Transact-SQL IsNull statement when working with SQL Server
(version 7.0 and later) queries. SQL Server uses IsNull to deal with
the null value if it arises so I don’t have to write additional code to
handle nulls when I process a recordset. For example, in this code
that reads CustomerID and EmailAddress from a Customers Table,
SQL Server returns the value “na” if the EmailAddress field is null:

set rsCustomerDetails = cn.Execute("Select " & _
"CustomerID, IsNull(EmailAddress,'na') as " & _
"EmailAddress from Customers")

You can’t update the recordset because IsNull appears in the
Select statement. But you’ll find many circumstances where this
doesn’t matter, such as when using VBScript to build a table in a
Web page.

—Robert Bryan, Downer, Australian Capital Territory,
Australia

VB5, VB6
Level: Intermediate

Add a Picture Preview Property Page
Defining a public property in a user control as Picture (or StdPicture)
provides the standard ellipsis next to the property name in VB’s
property viewer automatically. This pops up a standard dialog to
load an image control.

Let’s say you have this code in a user control:

Public Property Get Picture() As Picture
Set Picture = UserControl.Picture

End Property

Public Property Set Picture(_
ByVal newPicture As Picture)
Set UserControl.Picture = newPicture
PropertyChanged "Picture"

End Property

You can add a standard VB property page to the control that
provides the standard preview window so you can see what you’re
loading. To do this, you open the UserControl in design mode and
select the PropertyPages property. You’ll see a dialog with three
or four choices: StandardPicture, StandardFont, StandardColor,
and (for VB6) StandardDataFormat. Simply check the ones you
wish to have a custom property added to the UserControl’s other
properties. Note: Just because you add the property pages doesn’t
mean you can access them immediately. You need to assign the
page to specific properties using the Procedure Attributes dialog.

—John Cullen, Pedroucos, Portugal

VB6
Level: Intermediate

Split Strings Cleanly, Redux
In the 10th Edition of the “101 Tech Tips for VB Developers”
supplement [Visual Basic Programmer’s Journal February 2000],
the “Split Strings Cleanly” function splits an array containing more
than one delimiter in a row efficiently. This functions works great
for one delimiter, but what if you want to split an array on more
than one delimiter? Adding a few lines of code and using recursion
can enhance the function to handle multiple delimiters.

When more than one delimiter is passed into the function, you
rejoin the filtered array using the next delimiter, drop the current
delimiter from the delimiter list, and call the function again:

Public Function CleanSplit2(_
ByVal Expression As String, _
Optional ByVal Delimiters As String = " ", _
Optional ByVal Limit As Long = -1, _
Optional Compare As VbCompareMethod = _
vbBinaryCompare) As Variant

Dim Substrings() As String
Dim OneDelimiter As String
Dim I As Long

OneDelimiter = Mid$(Delimiters, 1, 1)
Substrings = Split(Expression, OneDelimiter, _

Limit, Compare)
For I = LBound(Substrings) To UBound(Substrings)

If Len(Substrings(I)) = 0 Then
Substrings(I) = OneDelimiter

End If
Next I
If Len(Delimiters) = 1 Then

CleanSplit2 = Filter(_
Substrings, OneDelimiter, False)

Else
CleanSplit2 = _

CleanSplit2(Join(_
Filter(Substrings, OneDelimiter, False), _
Mid$(Delimiters, 2, 1)), _
Mid$(Delimiters, 2), Limit, Compare)

End If
End Function

—Stephen Sayabalian, Waltham, Mass.

VB3, VB4, VB5, VB6
Level: Intermediate

Keep Your Projects Intact
VB has always gone out of its way to take care of mundane
housekeeping tasks without bothering you with the details. But
sometimes the best intentions can create unintended problems.
When you work with a project, VB automatically keeps track of the
project’s files by maintaining their entries in the VBP project file
(MAK in VB3). When you move files around or bring in files from
other projects, VB edits the path information for those files,
sometimes creating an incomprehensible mess of upward-moving
relative paths littered with “\..\” steps. The result can be cata-
strophic—you can inadvertently edit a different project’s source
code, or you can end up missing files when you move a project to
another directory or computer. To avoid these problems, first
make sure all your working files are in the directories you in-
tended, then edit the VBP file manually in Notepad to remove any
visually ambiguous path descriptions. Make sure you exit the VB
IDE before editing the VBP file.

—Ron Schwarz, Hart, Mich.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 3

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB3, VB4, VB5, VB6
Level: Beginning

A New Look at the Select Case
Who says the Select Case can evaluate only one statement? Try
Select Case True instead of the If…ElseIf…End If blocks. Select
Case’s more eloquent style makes code easier to read, write, and
maintain. Consider both these routines that reset the controls on
a form:

' If...ElseIf...End If Version
Public Sub IfResetForm(frmForm As Form)

Dim c As Control

For Each c In frmForm.Controls
If TypeOf c Is TextBox Then

c.Text = ""
ElseIf TypeOf c Is ComboBox Then

c.ListIndex = -1
If c.Style <> vbComboDropdownList Then

c.Text = ""
End If

ElseIf TypeOf c Is ListBox Then
c.ListIndex = -1

ElseIf TypeOf c Is CheckBox Then
c.Value = vbUnchecked

ElseIf TypeOf c Is OptionButton Then
c.Value = False

End If
Next c

End Sub

' Select Case True Version
Public Sub SelResetForm(frmForm As Form)

Dim c As Control

For Each c In frmForm.Controls
Select Case True

Case TypeOf c Is TextBox
c.Text = ""

Case TypeOf c Is ComboBox
c.ListIndex = -1
If c.Style <> vbComboDropdownList Then

c.Text = ""
End If

Case TypeOf c Is ListBox
c.ListIndex = -1

Case TypeOf c Is CheckBox
c.Value = vbUnchecked

Case TypeOf c Is OptionButton
c.Value = False

End Select
Next c

End Sub

The Select Case True routine is easy to read and debug, whereas
the If…ElseIf…End If routine gives the impression of nesting and
might be more difficult to evaluate at a glance. The Select Case
True executes the code block of the first true statement it encoun-
ters; however, code tends to flow better when you construct a list
of Case statements rather than a series of ElseIf blocks.

—Michael C. Stahr, Oxford, Ohio

VB4/32, VB5, VB6, SQL Server 6.5 and up, Oracle 8i and up
Level: Intermediate

Change Oracle and SQL Server Passwords
You can change database passwords from within VB to control
more of your application’s security and limit your dependence on
an external DBA. This function updates a database password for
either Oracle or SQL Server:

Function UpdateLogin(pbOracle As Boolean, _

padoConn as ADODB.Connection, _
pstrUserId As String, _
pstrCurPassword As String, _
pstrNewPassword As String) As Boolean

Dim strSQL As String
On Error GoTo ErrHandler
UpdateLogin = True
If (pbOracle) Then

strSQL = "ALTER USER " & pstrUserId & _
" IDENTIFIED BY " & pstrNewPassword

Else
strSQL = "sp_password '" & _

pstrCurPassword & "', '" & _
pstrNewPassword & "'"

End If
padoConn.Execute strSQL
Exit Function

ErrHandler:
UpdateLogin = False
Exit Function

End Function

To use this, you should connect to the database using the account
you’re changing.

—Andy Clark, Richmond, Va.

VB4/32, VB5, VB6, VBA, VBS
Level: Intermediate

Generate OLE DB Connection Strings
Many VB projects need a database connection string. But there’s
no easy way to generate an OLE DB connection string without
adding a DataEnvironment to your project, setting the values on
the Data Link Properties dialog by selecting Properties from the
Connection1 object context menu, and finally retrieving the value
in the ConnectionSource property as your connection string.

For a better way, simply paste these nine lines of code into
a text file with a VBS (VBScript) extension, and double-click on
the file:

Dim oDataLinks, sRetVal
Set oDataLinks = CreateObject("DataLinks")
On Error Resume Next ' Trap Cancel button
sRetVal = oDataLinks.PromptNew
On Error Goto 0
If Not IsEmpty(sRetVal) Then ' Didn't click Cancel
InputBox "Your Connection String is listed below.", _

"OLEDB Connection String", sRetVal
End If
Set oDataLinks = Nothing

Follow the usual prompts to place the resulting connection string
in an input box for easy cut-and-pasting. Now any time you need a
connection string for an OLE DB data source, it’s only a double-
click away.

Note: If you’re using VB, you can add a reference to the Microsoft
OLE DB Service Component 1.0 Type Library (OLEDB32.dll) and use
the Object Browser to explore the additional interfaces the DataLinks
object exposes.

—Anthony T. Petro, Centennial, Colo.

VB6
Level: Advanced

Continue After Hitting an Error
If you use VB6 to write COM programs that raise errors, it seems
impossible to continue after hitting one of them. However, the
(almost undocumented) commands ALT+F8 and ALT+F5 let you
step and run past an error, respectively, into the error-handling
code or—more importantly—into the code that called the proce-
dure where the error occurred (such as a C++ client). This can be

4 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

a real lifesaver if you’re coding in both C++ and VB and the
programs have to play nicely. You can directly receive error
results raised in the VB code instead of hacking around it by setting
breakpoints in the client, setting the next line of execution to
something that returns to the caller, and using the debugger to
save the error code into a variable on the client. Why the “run,”
“step over,” and similar buttons don’t do what ALT+F8 and ALT+F5
do is beyond me.

—Michael Nyman, Tualatin, Ore.

VB5, VB6
Level: Beginning

Generate Rule-Based Random Strings
Use this function to generate random strings that abide by certain
criteria. It’s perfect for password generators or strings used in a
challenge/response authentication scheme:

Public Enum RandomStringOptions
 rsoAllChars = 0
 rsoAllCharsExtended = 1
 rsoKeyboardChars = 2
 rsoAlphaNumericChars = 3

End Enum

Public Function RandomString(Optional ByVal _
MinLength As Long = 20, _
Optional ByVal MaxLength As Long = 29, _
Optional ByVal ExclusionCharacters As String = _
" ", Optional ByVal RandomOption As _
RandomStringOptions = rsoAlphaNumericChars) _
As String

'===
' Generates a random string using ...
' Max/MinLength: Determines the minimum and
' maximum size of the string.
' ExclusionCharacters: Characters that cannot
' appear in the random string.
' RandomOption: Special options used to define
' additional rules.
'===

' Where random string is built
Dim Buffer() As Byte
' Next character to test
Dim NextChar As Byte
' The lower range of the char table
Dim iCharLo As Integer
' The upper range of the char table
Dim iCharHi As Integer
Dim i As Long

' Sanity check
If MinLength < 1 Or MaxLength < MinLength Then

Err.Raise 5, App.ProductName
End If

If RandomOption = rsoKeyboardChars Then
' -- only keyboard characters are supported
' Characters 32 through 126 are keyboard
' characters
iCharLo = 32: iCharHi = 126

ElseIf RandomOption = rsoAlphaNumericChars Then
' This range included entire alphanumeric
' characters
iCharLo = 48: iCharHi = 122

ElseIf RandomOption = rsoAllCharsExtended Then
' -- we can use the entire "standard" ascii
' character set
iCharLo = 0: iCharHi = 127

Else ' RandomOption = rsoAllChars
' -- we can use the entire character set,
' including extended characters
iCharLo = 0: iCharHi = 255

End If

' Fire up the random number generator
Randomize Timer
' Size the buffer to fit a random number size
' within the desired string length range.
ReDim Buffer(1 To Int((MaxLength - MinLength _

+ 1) * Rnd + MinLength))

' Loop through the output buffer
For i = LBound(Buffer) To UBound(Buffer)

' Loop until "good" character is selected
Do

' Get a random character in the character
' set range
NextChar = Int((iCharHi - iCharLo + 1) * _

Rnd + iCharLo)

' Make sure not in exclusion list
If InStr(ExclusionCharacters, _

Chr(NextChar)) = 0 Then
' Check if AlphaNumeric?
If RandomOption = rsoAlphaNumericChars _

Then
Select Case NextChar
Case 48 To 57, 65 To 90, 97 To 122

' within the alphanumeric range
' of characters
Exit Do

Case Else
' just keep on looping until
' alphanumeric
' character generated.

End Select
Else

' we have a non-excluded char
Exit Do

End If
End If

Loop
' Assign this char, and get next
Buffer(i) = NextChar

Next i

' Return the resulting string
RandomString = StrConv(Buffer, vbUnicode)

End Function

—Monte Hansen, Ripon, Calif.

C#
Level: Beginning

Close a Windows Form
A Close button, which closes a form when the user clicks on it, is
one of the most common interface controls added to a Windows
form. Unfortunately, the wizard does not generate the code for
you, so you must do it manually. Add a button to the form; set its
text to Close, Cancel, or Exit; and give it a meaningful name such
as m_CloseButton. Next, create a Click event method handler
(such as OnCloseButtonClick) and add a new delegate, initialized
with that handler to the Close button’s Click event:

public class MyForm : Form
{

protected Button m_CloseButton;
public MyForm()
{

InitializeComponent();
CancelButton = m_CloseButton;

}
private void InitializeComponent()
{

m_CloseButton = new Button();

SEPTEMBER 2001 Supplement to Visual Studio Magazine 5

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

✰✰✰✰✰ Five Star Tip
m_CloseButton.Click +=

new EventHandler(OnCloseButtonClick);
Controls.Add(m_CloseButton);

}
protected void OnCloseButtonClick(object sender,

EventArgs e)
{

Close(); //calls Dispose() for you as well
}

}

You can also double-click on the Close button in the visual
designer and let Visual Studio.NET generate this code for you.
In your Close button Click event handler, simply call your base
class (System.Windows.Forms.Form) Close() method to close
the form. In addition to closing the form, the Form.Close()
implementation also calls Dispose() for you, so you don’t need to
call it explicitly yourself.

Finally, you need to handle the event of the user hitting the
Escape key. The convention in Windows is that this action should
close the form, just as if the user clicked on the Close button. In
your form constructor, after the call to InitializeComponent(), set
your base class CancelButton property to the Close button you
just added. This will redirect the Escape event to your button, as
if the user clicked on it.

—Juval Lowy, San Jose, Calif.
author of COM+ Services - Mastering COM and .NET

Component Services [O’Reilly, 2001]

VB6, SQL Server 6.5 and up
Level: Intermediate

Let MTS Handle Transaction Management
When you call a stored procedure in SQL Server that performs data
manipulation on the database from a Microsoft Transaction Server
(MTS) transaction, let MTS handle all the transaction manage-
ment. Don’t put a BEGIN TRANSACTION | COMMIT TRANSACTION |
ROLLBACK TRANSACTION in the stored procedure. The transac-
tion you create in the stored procedure doesn’t enlist in the MTS
transaction, so MTS isn’t notified when you handle the SQL errors
manually. This means an error in your stored procedure won’t
force the rollback of the MTS transaction’s other parts. The MTS
transaction returns a success notification even when part of the
transaction failed.

—Jason Rein, Thompson’s Station, Tenn.

VB4/32, VB5, VB6
Level: Beginning

Return File Version Info
Regarding the “Retrieve File Version Information” tip in the 11th

Edition of the “101 Tech Tips for VB Developers” supplement
[Visual Basic Programmer’s Journal March 2001], I have a shorter
function that achieves the same task. To use the FileSystemObject,
you need to reference the Microsoft Scripting Runtime:

Public Function GetExecutableFileVersion(ByVal _
Filename As String) As String
Dim FileObj As Scripting.FileSystemObject

' Create Object
Set FileObj = New Scripting.FileSystemObject

If FileObj.FileExists(Filename) Then
GetExecutableFileVersion = _

FileObj.GetFileVersion(Filename)
End If

' Free Object
Set FileObj = Nothing

End Function

—Simon Murrell, Bedfordview, Gauteng, South Africa

VB4/32, VB5, VB6, VBS
Level: Intermediate

Create ISAM Files Out of Thin Air
Visual Basic Programmer’s Journal once published a tip on how to
use undocumented Jet/SQL features to create a new ISAM file in
the format of your choice—such as Excel, dBase, Paradox, HTML,
and Lotus—without having to use automation with the object
model or even having the destination file type’s application on the
user’s machine [“Export Data to ISAM Databases,” 6th Edition of the
“101 Tech Tips for VB Developers” supplement, Visual Basic
Programmer’s Journal February 1998].

Microsoft still says that method doesn’t exist. Here’s another
it says doesn’t exist, but it does as of ADO/ADOX 2.1. Start a new
VB project and add a reference to ADO and ADOX (Microsoft ADO
Extensions for DDL and Security):

Dim cn As Connection
Dim cat As Catalog
Dim tbl As Table
Dim fld As Column
Set cn = New Connection
With cn

.ConnectionString = _
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Extended Properties=Excel 8.0;Data Source=" _
& App.Path & "\anewfile.xls"

.Open
End With

Set cat = New Catalog
With cat

.ActiveConnection = cn
Set tbl = New Table
tbl.Name = "ANewSheet"
Set fld = New Column
fld.Name = "MyCol1"
fld.Type = adWChar
fld.DefinedSize = 30
tbl.Columns.Append fld
.Tables.Append tbl

Set tbl = New Table
tbl.Name = "Another"
Set fld = New Column
fld.Name = "Wubba"
fld.Type = adWChar
fld.DefinedSize = 10
tbl.Columns.Append fld
.Tables.Append tbl

cat.Tables.Refresh
End With
Set fld = Nothing
Set tbl = Nothing
Set cat = Nothing
cn.Close
Set cn = Nothing

Run it to see your Excel file created with a Worksheet named
NewSheet and a column named/typed as you specified.

Use this to wow your users with multisheet reports. Once you
create the sheets, you can use ADO to connect to the files and
manipulate them as you would any other ADO data source. But the
coolness of this technique lies not in the fact that you can manipu-
late an ISAM data source once you have one on your machine—
that has always been easy. The coolness is the ability to create the
files out of thin air in the first place using only ADO.

Like the original SQL method, this approach creates most
other ISAMs too. Simply replace the Extended Properties= value
with the specifier you desire, such as Extended Properties=dBase
IV;, Extended Properties=Paradox 4.x;, and so on.

—Robert Smith, Kirkland, Wash.

6 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB3, VB4, VB5, VB6
Level: Beginning

Tweak the Key and Mouse Events
Many VB objects have KeyDown, KeyUp, MouseDown, MouseUp,
and MouseMove events. They’re unique in one respect: They have
built-in limitations on what they’re able to do. You often need to
coordinate these events with things outside their immediate
scope to use them effectively. For example, you might need your
app to perform a repetitive action while a mouse button is down.

The MouseDown event fires only once—when the button is
clicked—so you can’t determine the mouse state outside the
MouseDown event easily. Handle these situations by using a
variable with sufficient scope to address the required code. For
example, if you’re coding all the mouse-oriented functionality
within the form that contains the control in question, declare a
form-level Boolean variable and use it to track the mouse’s state.
Set the variable to True when the MouseDown event fires, and to
False when the MouseUp event fires. When your code executes,
have it check the mouse state by testing the variable’s current
value. The Mouse events then maintain the variable’s state auto-
matically, and you can track the variables’, hence the mouse, state
from outside the mouse events.

—Ron Schwarz, Hart, Mich.

VB5, VB6
Level: Advanced

Get Dynamic Array Information
Use the GetSafeArrayInfo function to rip the lid off a SAFEARRAY.
It allows the caller to identify the number of dimensions and
number of elements for each dimension (among other things).
Element information for each dimension is stored in a one-based
subarray of SAFEARRAYBOUND structures (rgsabound):

Public Type SAFEARRAYBOUND
 ' # of elements in the array dimension
 cElements As Long
 ' lower bounds of the array dimension
 lLbound As Long

End Type
Public Type SAFEARRAY

' Count of dimensions in this array.
cDims As Integer
' Flags used by the SafeArray
' routines documented below.
fFeatures As Integer
' Size of an element of the array.
' Does not include size of
' pointed-to data.
cbElements As Long
' Number of times the array has been
' locked without corresponding unlock.
cLocks As Long
' Pointer to the data.
' Should be sized to cDims:
pvData As Long
' One bound for each dimension.
rgsabound() As SAFEARRAYBOUND

End Type

Private Declare Sub CopyMemory Lib "kernel32" Alias _
"RtlMoveMemory" (ByVal lpDest As Long, ByVal _
lpSource As Long, ByVal nBytes As Long)

Public Function GetSafeArrayInfo(TheArray As _
Variant, ArrayInfo As SAFEARRAY) As Boolean

'===
' Fills a SAFEARRAY structure for the array.
' TheArray: The array to get information on.
' ArrayInfo: The output SAFEARRAY structure.
' RETURNS: True if the array is instantiated.
'===

' Pointer to the variants data item
Dim lpData As Long
' the VARTYPE member of the VARIANT structure
Dim VType As Integer
Const VT_BYREF As Long = &H4000&

' Exit if no array supplied
If Not IsArray(TheArray) Then Exit Function

With ArrayInfo
' Get the VARTYPE value from the first 2 bytes
' of the VARIANT structure
CopyMemory ByVal VarPtr(VType), ByVal _

VarPtr(TheArray), 2

' Get the pointer to the array descriptor
' (SAFEARRAY structure)
' NOTE: A Variant's descriptor, padding &
' union take up 8 bytes.
CopyMemory ByVal VarPtr(lpData), ByVal _

(VarPtr(TheArray) + 8), 4

' Test if lpData is a pointer or a pointer to
' a pointer.
If (VType And VT_BYREF) <> 0 Then

' Get real pointer to the array descriptor
' (SAFEARRAY structure)
CopyMemory ByVal VarPtr(lpData), ByVal _

lpData, 4
' This will be zero if array not
' dimensioned yet
If lpData = 0 Then Exit Function

End If

' Fill the SAFEARRAY structure with the array
' info
' NOTE: The fixed part of the SAFEARRAY
' structure is 16 bytes.
CopyMemory ByVal VarPtr(ArrayInfo.cDims), _

ByVal lpData, 16

' Ensure the array has been dimensioned before
' getting SAFEARRAYBOUND information
If ArrayInfo.cDims > 0 Then

' Size the array to fit the # of bounds
ReDim .rgsabound(1 To .cDims)

' Fill the SAFEARRAYBOUND structure with
' the array info
CopyMemory ByVal VarPtr(.rgsabound(1)), _

ByVal lpData + 16, _
ArrayInfo.cDims * Len(.rgsabound(1))

' So caller knows there is information
' available for the array in output
' SAFEARRAY
GetSafeArrayInfo = True

End If
End With

End Function

—Monte Hansen, Ripon, Calif.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 7

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB4/32, VB5, VB6, SQL Server 6.5 and up, Oracle 8i and up
Level: Intermediate

Compare Oracle and SQL Server Strings
Oracle and SQL Server treat strings slightly differently—they don’t
trim blank and null characters identically. So you’ll have problems
comparing string data between Oracle and SQL Server. The solu-
tion—trim both blanks and nulls from all strings:

Private Function MatchStrings(adoFldOra As _
ADODB.Field, adoFldSQLServ As _
ADODB.Field) As Boolean

Dim strOracle As String
Dim strSQLServ As String

strOracle = TrimNulls(adoFldOra.Value)
strSQLServ = TrimNulls(adoFldSQLServ.Value)
MatchStrings = (strOracle = strSQLServ)

End Function

Private Function TrimNulls(pstrIn As String) As _
String

Dim ndx As Integer
Dim pos As Integer
Dim strWork As String

strWork = ""
pos = 0
ndx = 1
Do While ((pos = 0) And (ndx <= Len(pstrIn)))

If (Asc(Mid(pstrIn, ndx, 1)) <> 0) _
And (Mid(pstrIn, ndx, 1) <> " ") Then
pos = ndx

End If
ndx = ndx + 1

Loop
If (pos = 0) Then

TrimNulls = ""
Exit Function

End If
strWork = Mid(pstrIn, pos)
ndx = Len(strWork)
pos = 0
Do While ((pos = 0) And (ndx > 0))

If (Asc(Mid(pstrIn, ndx, 1) <> 0) And _
(Mid(pstrIn, ndx, 1) <> " ")) Then
pos = ndx

End If
ndx = ndx - 1

Loop
If (pos = 0) Then

TrimNulls = ""
Exit Function

End If
TrimNulls = Left(strWork, pos)

End Function

—Andy Clark, Richmond, Va.

VB.NET
Level: Beginning

Clarify Procedure Attributes With Line Continuation
Add readability to your attribute assignments by placing them on
their own line with an underscore line-continuation character:

<Obsolete("Use NewCalc instead",True)> _
Public Sub Calc()
...

End Sub

—Jonathan Goodyear, Orlando, Fla.

VB.NET, C#
Level: Beginning

Reading Console Output When Working in the IDE
When you run a console from the IDE, the console often disappears
before you get the chance to view the output. You can work around
this by using Console.Read() to pause the program until you hit
the Enter key.

VB.NET:

Console.WriteLine("Press Enter to close this window")
Console.Read()

C#:

Console.WriteLine("Press Enter to close this window");
Console.Read()

You can also change the build output type to Windows Applica-
tion. When you change a console application’s output type to
Windows Application, the console’s output gets redirected to
the IDE’s output window where you can view the output after
the application has finished running as well as while the applica-
tion is running.

—Jonathan Goodyear, Orlando, Fla.

SQL Server 6.5 and up
Level: Beginning

Find the Cause of Query Malfunctions
When debugging a SELECT query, add an absolute true condition
as the first condition of the WHERE clause:

SELECT
au_lname,
au_fname

FROM
authors

WHERE
1=1 --absolute true condition
and state = 'CA'
and contract = 1

That way, you can comment out one or more of the real conditions
in the WHERE clause using the “- -” comment character sequence to
narrow down which condition(s) cause the query to malfunction.
When you’re done debugging your query, remove the absolute true
condition as well as the “and” in front of the first real condition.

—Jonathan Goodyear, Orlando, Fla.

VB.NET
Level: Beginning

Know the Differences Between CStr and .ToString
VB.NET’s CStr() method is locale-aware, which means it uses the
locale at run time to determine how to format the string. The
.ToString method is locale-neutral and is generally quicker. If you
need to format strings according to the end user’s regional set-
tings, use CStr. Otherwise, use .ToString, which works on all
objects. CStr works only on objects that implement IFormattable.

Note: Neither works exactly like VB5/6 CStr, which returns a
localized string based on compile-time settings.

—Bill McCarthy, Barongarook, Victoria, Australia

8 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VBS, ASP/IIS 4.0 and up
Level: Intermediate

Upload Files to Active Server Pages
Many companies sell ActiveX objects for uploading files to Active
Server Pages. However, you can easily write a bit of VBScript to handle
the uploads yourself. The Request object has all the uploaded data:

<!--
HTML for the upload form
'uploadform.html'

-->
<html><body>
<form action="upload.asp" method="post"
enctype="multipart/form-data">
<input type=file name="file1" size=20>

<input type=file name="file2" size=20>

<input type=submit>
</body></html>

<!--
ASP Code for the upload
'upload.asp'

-->
<html><body>
<%

' This code is needed to "initialize" the
' retrieved data
Dim q
q = Chr(34)
' All data
Dim aAllDataB, aAllData, x, aHdr
aAllDataB = Request.BinaryRead(Request.TotalBytes)
' It comes in as unicode, so convert it to ascii
For x = 1 To LenB(aAllDataB)

aAllData = aAllData & Chr(AscB(MidB(_
aAllDataB, x, 1)))

Next
' The "header" is a unique string generated by the
' system to indicate the beginning
' and end of file data
aHdr = Left(aAllData, Instr(aAllData,vbCrLf)+1)

%>

<%
' Here's where your code goes.
' In this example, "file1" and "file2" are the
' field names specified within the form of the
' upload submission page.
Response.Write "file1: Filename = " & _

GetFilename("file1") & "
"
Response.Write GetFileData("file1") & "

"

Response.Write "file2: Filename = " & _
GetFilename("file2") & "
"

Response.Write GetFileData("file2") & "

"

' Writing out the file data like this only looks
' OK when the uploaded file is some kind of text
' — images and things like that probably just need
' to be saved or otherwise acted upon.
Response.Write Replace(aAllData,vbCrLf,"
")

Dim aFilename
' aFilename equates to the original filename,
' except saved in the root path of the server.
' The root path must have Change rights for the
' default Internet user.
aFilename = Server.MapPath("\") & "\" & _

GetFileName("file1")
Call SaveFile("file1", aFilename)
aFilename = Server.MapPath("\") & "\" & _

GetFileName("file2")
Call SaveFile("file2", aFilename)

%>
</body></html>
<%

' These are functions used to retrieve the data
Function GetFileName(aField)

Dim x2, i
x = Instr(aAllData, aHdr & _

"Content-Disposition: form-data; name=" & _
q & aField & q)

x = Instr(x, aAllData, "filename=" & q)
x2 = Instr(x, aAllData, vbCrLf)
For i = x2 To x Step -1

If Mid(aAllData,i,1) = "\" Then
x = i - 9
Exit For

End If
Next
GetFileName = Mid(aAllData, x+10, x2-(x+11))

End Function
Function GetFileData(aField)

Dim x2
x = Instr(aAllData, aHdr & _

"Content-Disposition: form-data; name=" & _
q & aField & q)

x = Instr(x, aAllData, vbCrLf)
x = Instr(x+1, aAllData, vbCrLf)
x = Instr(x+1, aAllData, vbCrLf) + 2
x2 = Instr(x, aAllData, Left(aHdr,Len(aHdr)-2))
GetFileData = Mid(aAllData, x+2, x2-x-4)

End Function
Function SaveFile(aField, aFilename)

Dim FSO, TS
Set FSO = _

server.CreateObject(_
"Scripting.FileSystemObject")

Set TS = FSO.CreateTextFile(aFilename, True, _
False)

TS.Write GetFileData(aField)
TS.Close
Set TS = Nothing
Set FSO = Nothing

End Function
%>

—Matt Hart, Tulsa, Okla.

C#
Level: Beginning

Format a Number in a String
If you want to format a number in a string so it’s in hexadecimal
format rather than decimal, use the Format method for the data type:

int I = 123;

Console.WriteLine (
"decimal i = " + i +
" hexadecimal i = " +
int.Format(i, "x8"));

The number after the x tells Format how many digits to display,
adding zeros to pad out the number of digits you specify. Here’s
the output from this line:

decimal i = 123
hexadecimal i = 0000007b

—Andy Harding, Kirkland, Wash.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 9

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB3, VB4, VB5, VB6
Level: Beginning

Loop Using GetTickCount or timeGetTime
This TickDiff function returns the difference of two calls to
GetTickCount or timeGetTime, taking into account things such as
VB’s two’s complement as well as wrapping by the operating
system:

#If Win32 Then
Private Declare Function GetTickCount _

Lib "kernel32" () As Long
#Else

Private Declare Function GetTickCount _
Lib "User" () As Long

#End If

Public Sub SampleLoop()
Dim TickStart As Currency
TickStart = GetTickCount()
' Loop for 5 seconds
Do While TickDiff(TickStart, GetTickCount()) _

< 5000
' loop code here

Loop
End Sub

Public Function TickDiff(_
ByVal TickStart As Currency, _
ByVal TickEnd As Currency) As Long

' CCur(2 ^ 32)
Const TwoToThe32nd As Currency = 4294967296@

' Handle two's complement for values larger than
' 2147483647&
If TickStart < 0 Then

TickStart = TickStart + TwoToThe32nd
End If
' Handle two's complement AND the case where
' timeGetTime/GetTickCount wraps at (2 ^ 32)ms,
' or ~49.7 days:
If (TickEnd < 0) Or (TickEnd < TickStart) Then

TickEnd = TickEnd + TwoToThe32nd
End If
' Return the result
TickDiff = TickEnd - TickStart

End Function

—Monte Hansen, Ripon, Calif.

VS.NET
Level: Beginning

Work With Miscellaneous Files
Visual Studio.NET has a miscellaneous files feature that allows you
to create links to other files in Solution Explorer. The files are not
added to your project or copied to the project folder. This comes
in handy if you want to refer to some reference document while
working on a project, such as a readme file, or when you’re writing
API declarations. You can use the Find in Files features of VS.NET
to locate the .h (C/C++ Header file) that has the functions and
constants declared. Double-click on the file in the results to add it
to your miscellaneous files.

The miscellaneous files will contain links to them from Solution
Explorer the next time you open the project. To enable this, you
need to turn on the miscellaneous files option and set the limit for
how many files should be remembered per solution. To do this,
you select Tools | Options | Environment | Documents and check
the Show Miscellaneous Files feature. Then type in the number of
files to remember (between 0 and 256 per solution).

—Bill McCarthy, Barongarook, Victoria, Australia

VB6, SQL Server 7.0 and up
Level: Advanced

Prevent SQL Server From Returning Record Counts
If you’re calling a stored procedure from a Microsoft Transaction
Server (MTS) transaction and that stored procedure performs
several actions before completing, SQL Server returns a count of
affected records for each action. If an error occurs after the first
record count is returned, the MTS transaction won’t acknowledge
the error because it sees the record count returned as a success
message. To alleviate this problem, put “SET NOCOUNT ON” at the
top of the stored procedure. Setting this option prevents SQL
Server from returning record counts.

This example will not return an error to an MTS transaction:

USE Northwind
GO
CREATE PROCEDURE sp_TestMTSNoError
AS
/*
** This query returns a count of affected record equal to 1.
*/
UPDATE Orders
SET EmployeeID = 5
WHERE OrderID = 10248
/*
** This query generates a 'Divide by Zero' error.
*/
SELECT 1/0
GO
/*
** Running this in Query Analyzer will show an error.
*/
EXECUTE sp_TestMTSNoError
Returns:
(1 row(s) affected)
Server: Msg 8134, Level 16, State 1, Procedure
sp_TestMTSNoError, Line 16
Divide by zero error encountered.

An MTS transaction won’t see the error message returned by this
query unless you apply the “SET NOCOUNT ON” option.

—Jason Rein, Thompson’s Station, Tenn.

VB4, VB5, VB6
Level: Beginning

Tiling Made Easy
Use this method whenever you need a tiled background on your
forms. All you need is an Image control with its Visible property set
to False, and a graphic in its Picture property. Set the form’s
AutoRedraw property to False and place this code inside the
Form_Paint event:

Private Sub Form_Paint()
Dim X As Single
Dim Y As Single

For Y = 0 To Me.ScaleHeight Step Image1.Height
For X = 0 To Me.ScaleWidth Step Image1.Width

 Me.PaintPicture Image1.Picture, X, Y
Next X

Next Y
End Sub

This code tiles within a PictureBox control as well. Simply replace
Me with the name of the PictureBox.

—Brian McDonald, Covington, Ky.

10 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

✰✰✰✰✰ Five Star Tip
XML, .NET beta 1 and up
Level: Beginning

Read XML Documents Efficiently
In applications where you need to read XML documents in the most
efficient manner possible, consider using the XmlTextReader class
rather than the XmlDocument class. The XmlTextReader is a stream
that allows tokens found in the source XML document to be read in
a forward-only manner without loading the entire XML document
into memory as with the DOM. Although at first glance this might
seem similar to Simple API for XML (SAX), the XmlTextReader
exposes a pull model rather than the push model found in SAX. The
pull model offers many performance benefits. Using the
XmlTextReader in an ASPX page is as simple as calling the read()
method (you must reference the System.Xml namespace):

XmlTextReader reader = new
XmlTextReader(Server.MapPath("myfile.xml"));

while (reader.Read()) {
if (reader.NodeType == XmlNodeType.Element) {

Response.Write("Found an Element!
");
if (reader.HasAttributes()) {

while (reader.MoveToNextAttribute()) {
Response.Write(

" Found an Attribute!
");
}

}
}

}
// Make sure you close the stream to prevent file locking
reader.Close();

—Dan Wahlin, Chandler, Ariz.

VB5, VB6, SQL Server 7.0 and up
Level: Intermediate

Execute a Temporary SQL Stored Procedure
If a user doesn’t have permission to create a stored procedure in
SQL Server (version 7.0 or later), he or she can still use ADO to
create a temporary stored procedure and execute it from VB:

Dim cmd As ADODB.Command
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection
Set cmd = New ADODB.Command
' Replace the connection string values below as
' required.
conn.Open "Provider=SQLOLEDB;Data" & _

" Source=MyDataSource;Initial" & _
" Catalog=InitialCatalog; User" & _
" ID=userID;Password=password"

strCmd = "SELECT Customers.CustomerID, OrderID," & _
" ContactName INTO #tempTable FROM Customers" & _
" INNER Join Orders ON Orders.CustomerID =" & _
" Customers.CustomerID"

cmd.ActiveConnection = conn
cmd.CommandText = strCmd
cmd.CommandType = adCmdText
cmd.Prepared = True
cmd.Execute

Using the Prepared property causes SQL Server to create and
store a temporary stored procedure in the tempdb database, in a
technique known as Prepared/Execute. The command text can
contain most things you could put in a SQL stored procedure.

—Parthasarathy Mandayam, Bellevue, Wash.

VS.NET
Level: Beginning

Use #region and #endregion to Organize Code
The #region and #endregion preprocessor directives define blocks
of code you can expand or collapse in the Visual Studio editor:

#region MenuHandlers
private void OnNew (object sender, EventArgs e)
{

Invalidate ();
}

private void OnExit (object sender, EventArgs e)
{

Close ();
}

private void OnOpen (object sender, EventArgs e)
{

Close ();
}

private void OnSave (object sender, EventArgs e)
{

Close ();
}

#endregion

This code defines a region called MenuHandlers. You can expand
or collapse this node in Visual Studio using the Visual Studio Editor
Outline feature. This feature lets you show only the code you’re
working with; it hides the rest in a class.

—Bill Wagner, Manchester, Mich.

VB4, VB5, VB6
Level: Intermediate

Déjà Queue
I especially enjoyed the “Quick and Easy Queue” tip in the 11th
edition of “101 Tech Tips for VB Developers” [Visual Basic
Programmer’s Journal March 2001]. You can use the technique for an
“undo” menu/toolbar option. Use a collection instead of a listbox to
reduce overhead. Support for both LIFO and FIFO is also included:

Public Queue As New Collection
Public Const Q_LIFO = 0
Public Const Q_FIFO = 1

Public Sub Enqueue(QueueItem As Variant)
Queue.Add QueueItem

End Sub

Public Function Dequeue(Optional Mode As Long) As Variant
Dim Position as Long

If Queue.Count > 0 Then
If Mode = Q_LIFO Then

Position = Queue.Count
Else

Position = 1
End If
Dequeue = Queue(Position)
Queue.Remove Position

Else
Dequeue = Null

End If
End Function

—Brian Ray, Rockford, Ill.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 11

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB6
Level: Advanced

Open a ToolBar Dropdown Menu
VB6 introduced a new Style=5-tbrDropDown of the Button object
for the ToolBar control. In this case, you can add one or more
ButtonMenu objects to the current Button. Unfortunately, you
can only open the dropdown menu by clicking on the drop-
down arrow; in other words, it has no built-in functionality for
opening a dropdown menu from code. Here’s one function,
ShowPopUpMenu, that lets you open a dropdown menu from
any place in your source code:

Private Type POINTAPI
x As Long
y As Long

End Type

Private Declare Function GetCursorPos Lib "user32" _
(lpPoint As POINTAPI) As Long

Private Declare Function ClientToScreen Lib _
"user32" (ByVal hWnd As Long, _
lpPoint As POINTAPI) As Long

Private Declare Function SetCursorPos Lib "user32" _
(ByVal x As Long, ByVal y As Long) As Long

Private Declare Function ShowCursor Lib "user32" _
(ByVal bShow As Long) As Long

Private Declare Sub mouse_event Lib "user32" (_
ByVal dwFlags As Long, ByVal dx As Long, _
ByVal dy As Long, ByVal cButtons As Long, _
ByVal dwExtraInfo As Long)

Private Sub ShowPopUpMenu(TB As Toolbar, _
IndexOfButton%)
Const MOUSEEVENTF_LEFTDOWN = &H2
Const MOUSEEVENTF_LEFTUP = &H4
Dim Pt As POINTAPI, oldPt As POINTAPI
With TB.Buttons(IndexOfButton)

If Not (.Style = tbrDropdown) Then Exit Sub
Call GetCursorPos(oldPt)
Call ClientToScreen(TB.hWnd, Pt)
Call ShowCursor(False)
Call SetCursorPos(Pt.x + ((.Left + .Width) / _

Screen.TwipsPerPixelX) - 1, _
Pt.y + ((.Top + .Height \ 2) / _
Screen.TwipsPerPixelY))

End With
Call mouse_event(MOUSEEVENTF_LEFTDOWN, _

0, 0, 0, 0)
Call mouse_event(MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
Call SetCursorPos(oldPt.x, oldPt.y)
Call ShowCursor(True)

End Sub

For example, if you need to open a dropdown menu when a user
clicks on a main part of any button, use this source code:

Sub ToolBar1_ButtonClick(ByVal Button As _
MSComctlLib.Button)
Call ShowPopUpMenu(ToolBar1, Button.Index)

End Sub

—Vladimir Olifer, Staten Island, N.Y.

VB3, VB4, VB5, VB6
Level: Intermediate

Replicate Character Patterns
VB’s String function is useful to fill a large string with a specific
character. Occasionally, you might need to fill a string with a
repeating set of characters. If you’re using a small database held
inside a string, for example, you might want to set default values
for some of the fields.

When the need does arise, you can use VB’s Mid statement to
handle the task:

Dim Data As String
Const Rep = "ABCD"

Data = Rep & Space$(1000)
Mid$(Data, Len(Rep) + 1) = Data

These last two statements do a significant amount of work. The first
line allocates the required memory, and the second fills that memory
with character data—that’s pretty good for only two lines of code.
Not surprisingly, this step is quick, even for large strings, and it
provides better functionality than VB’s regular String function:

Public Function Replicate (ByVal Number As Long, _
ByVal Pattern As String) As String
' Returns PATTERN replicated in a string NUMBER times.
' Number = Number of replications desired
' Pattern = Character pattern to replicate
Dim LP As Long
Dim sRet As String
If Number > 0 Then

LP = Len(Pattern)
If LP > 1 Then

sRet = Pattern & Space$((Number - 1) * LP)
If Number > 1 Then

Mid$(sRet, LP + 1) = sRet
End If

Else
sRet = String$(Number, Pattern)

End If
End If
Replicate = sRet

End Function

—Larry Serflaten, Monticello, Minn.

VS.NET
Level: Intermediate

Examine IL
When you compile a VB.NET or C# project, the code is compiled to
Microsoft Intermediate Language (MSIL). You can view the IL code
in ILDasm.exe. Launch ILDASM from the VS.NET IDE to view the
compiled IL for your code quickly. First, ensure that ILDASM is
installed—it should be located in the .NET Framework tools direc-
tory. If it is not in there, run Setup again and make sure you install
the .NET SDK components. Select External Tools from the Tools
menu. Add an entry for ILDASM and specify these parameters:

Command: the full path to ildasm.exe
Arguments: $(TargetPath)

When you want to look at the IL for your program, simply build it
and click on your ILDASM entry in the Tools menu. To dump the IL
to a text file, specify this parameter:

Arguments:$(TargetPath) /out=$(TargetDir)$(TargetName).il

—Bill McCarthy, Barongarook, Victoria, Australia

12 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB3, VB4, VB5, VB6
Level: Advanced

Boundless Array Indexing
Use this function for getting the 10th next element from an array
with “circular” contents such as “Monday,” “Tuesday,” and so on:

intCurrent = WrapIndex(Index:=intCurrent, _
Move:=+10, UpperBound:=6)

You don’t have to think about passing the end of the array as long
as that’s what you want to do:

Public Function WrapIndex(ByVal Index As Long, _
ByVal Move As Long, _
ByVal UpperBound As Long, _
Optional ByVal LowerBound As Long) As Long
' Function for incrementing an index past UB
' and starting over from LB, or the other way
' around.
' If LowerBound is omitted, 0-base is assumed.

Dim lngCount As Long

If UpperBound = LowerBound Then
WrapIndex = LowerBound

Else
' Swap UpperBound and LowerBound if needed
If LowerBound > UpperBound Then

LowerBound = LowerBound Xor UpperBound
UpperBound = LowerBound Xor UpperBound
LowerBound = LowerBound Xor UpperBound

End If

' number of elements in range
lngCount = UpperBound - LowerBound + 1

' Move Index inside of range
' LowerBound...UpperBound if needed
If Index < LowerBound Then

Index = UpperBound - ((LowerBound -_
Index) Mod lngCount) + 1

ElseIf Index > UpperBound Then
Index = LowerBound + ((Index -_

UpperBound) Mod lngCount) - 1
End If

' Move to the new index
Select Case Move

Case Is > 0
WrapIndex = (Index - LowerBound + _

Move) Mod lngCount + LowerBound
Case Is < 0

WrapIndex = (Index - LowerBound + _
lngCount - Abs(Move Mod lngCount)) _
Mod lngCount + LowerBound

Case 0
WrapIndex = Index

End Select
End If

End Function

—André Lomøy, Oslo, Norway

VB4/32, VB5, VB6, VBS, SQL 7.0 and up
Level: Intermediate

Avoid Zero-Length String Parameter Failures
Have you ever had a zero-length string parameter fail when at-
tempting to execute a stored procedure from ADO? You’ll find this
warning buried in the ADO documentation under the Append
method for the Parameters collection: “If you select a variable-
length data type, you must also set the Size property to a value
greater than zero.” This refers to any parameter passed as type
adLongVarChar, adLongVarWChar, adVarChar, or adVarWChar. I
use adVarWChar to send a parameter to a SQL Server stored
procedure expecting a varchar(N), so I’ve had problems with zero-
length strings. If you pass a zero-length string and use VB’s Len
function to retrieve its length, an error results when the length is
passed as 0.

I wrote a simple function, LenStringParameter, to return a
length of 1 instead. Place the function in a module to make it
available from anywhere in your app:

Function LenStringParameter(strParam As String) As Long
' From the ADO BOL: "If you select a variable-length
' data type, you must also set the Size property to a
' value greater than zero."
' The length must be passed as 1 even if the string
' is empty or Null.
LenStringParameter = IIf(Len(strParam) = 0, 1, _

Len(strParam))
End Function

Test this function by substituting LenStringParameter for Len
wherever needed:

Public Function TestStringParameter() as String
Dim strMyTestValue As String
Dim intOtherValue As Integer
strMyTestValue = TextMyKeyValue.Text
' Read from a text field, or assign directly.
intOtherValue = 1
Dim cmdADO As ADODB.Command: Set cmdADO = _

New ADODB.Command
With cmdADO
.ActiveConnection = strConnection
' Your connection string or connection here.
.CommandType = adCmdStoredProc
.CommandText = "spReturnMyAnswer"
.Parameters.Append .CreateParameter("MyTestValue", _

adVarWChar, adParamInputOutput, _
LenStringParameter(strMyTestValue), _
strMyTestValue)

.Parameters.Append .CreateParameter("OtherValue", _
adInteger, adParamInputOutput, _
Len(intOtherValue), intOtherValue)

.Execute
' Pick up the return values.
strMyTestValue = .Parameters("MyTestValue").Value
intOtherValue = .Parameters("OtherValue").Value
End With
Set cmdADO = Nothing
TestStringParameter = strMyTestValue
End Function

A word of caution: If you expect an adParamInputOutput type
parameter’s return value to be larger than the size going in, don’t use
LenStringParameter. You’ll receive truncated data. In other words,
if LenStringParameter returns 20, and 20 is sent as the size of an
adParamInputOutput type parameter, a maximum of 20 characters
will be returned, even if the stored procedure sets the value of the
OUTPUT parameter to a value longer than 20 characters. Instead,
set the size to the maximum allowed by the stored procedure. If the
stored procedure expects a varchar(25) OUTPUT, send the length
as 25. If it returns less than 25, the extra space will be discarded.

—Jake Mireles, Houston

SEPTEMBER 2001 Supplement to Visual Studio Magazine 13

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB4/32, VB5, VB6
Level: Intermediate

Convert a VB CommandButton Into a Picture Button
at Run Time
I first used this function in the VB4 days when CommandButtons
didn’t have a graphical Style property. It’s still useful because you
can’t set the Style property at run time. You can use this technique
to produce many different styles of intrinsic controls:

Private Declare Function GetWindowLong Lib "user32" _
Alias "GetWindowLongA" (ByVal hWnd As Long, _
ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong Lib "user32" _
Alias "SetWindowLongA" (ByVal hWnd As Long, _
ByVal nIndex As Long, ByVal dwNewLong As Long) _
As Long

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hWnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
ByVal lParam As Long) As Long

Private Const BS_BITMAP As Long = &H80&
Private Const BS_ICON As Long = &H40&
Private Const BS_TEXT As Long = 0&
Private Const BM_GETIMAGE As Long = &HF6
Private Const BM_SETIMAGE As Long = &HF7
Private Const IMAGE_BITMAP As Long = 0&
Private Const IMAGE_ICON As Long = 1&
Private Const GWL_STYLE As Long = (-16&)
Private Const GWL_EXSTYLE As Long = (-20&)

Public Sub SetButtonGlyph(Button As CommandButton, _
Picture As StdPicture)
Dim dwStyle As Long
Dim hImage As Long
Dim ImageType As Long

' Get the button style
dwStyle = GetWindowLong(Button.hWnd, GWL_STYLE)

If Picture Is Nothing Then
' Clear the graphic style, add the text style
dwStyle = (dwStyle Or BS_TEXT) And _

Not (BS_BITMAP Or BS_ICON)
If (dwStyle And BS_BITMAP) <> 0 Then

Call SendMessage(Button.hWnd, _
BM_SETIMAGE, IMAGE_BITMAP, 0&)

ElseIf (dwStyle And BS_ICON) <> 0 Then
Call SendMessage(Button.hWnd, _

BM_SETIMAGE, IMAGE_ICON, 0&)
End If

' Update style bits & redraw
SetWindowLong Button.hWnd, GWL_STYLE, dwStyle
Button.Refresh

Else
' Remove mutually exclusive bits
dwStyle = dwStyle And _

Not (BS_BITMAP Or BS_ICON Or BS_TEXT)
Select Case Picture.Type
Case vbPicTypeIcon

dwStyle = dwStyle Or BS_ICON
ImageType = IMAGE_ICON

Case vbPicTypeBitmap
dwStyle = dwStyle Or BS_BITMAP
ImageType = IMAGE_BITMAP

End Select

' Handle of image to attach to button.
hImage = Picture.Handle

' Change the style of the button
Call SetWindowLong(Button.hWnd, GWL_STYLE, _

dwStyle)
' Add or remove the glyph
Call SendMessage(Button.hWnd, BM_SETIMAGE, _

ImageType, hImage)
End If

End Sub

—Monte Hansen, Ripon, Calif.

VB3, VB4, VB5, VB6
Level: Beginning

Object Properties as Parameters are ByVal Only
In VB, we can use a function/sub call to return results by passing
parameters by reference (although it’s generally a bad idea). Be
aware that if you use an object’s properties as parameters, the
result might not be what you expected. For example, create a
simple form application with a textbox and command button, then
run this:

Private Sub Command1_Click()
Dim szMsg As String
szMsg = "Before: """ & Text1.Text & """" & vbCrLf
Call testStr(Text1.Text)
szMsg = szMsg & "After: """ & Text1.Text & """"
MsgBox szMsg

End Sub

Private Sub testStr(aszText As String)
aszText = "Text string changed"

End Sub

If you use an object’s property directly as a parameter, that
property won’t be updated. The reason is simple: VB copies the
property into a temporary memory location and passes that
memory as the parameter into the function/sub. VB doesn’t copy
the memory back to the object’s property after the call, so any
changes you make are lost.

—David Chu, Calgary, Alberta

VB3, VB4, VB5, VB6
Level: Beginning

App.Path is Inconsistent
The path returned by App.Path is inconsistent. If the program is
running in a root directory, the path will have a backslash on the
end. Otherwise, it won’t. The solution is to write one or two
wrapper functions to ensure a path has a backslash on the end:

Public Function NormalizePath(_
ByVal strPath As String) As String
' If the path doesn't have a slash at the end,
' add one.
If Right$(strPath, 1) = "\" Then

NormalizePath = strPath & "\"
Else

NormalizePath = strPath
End If

End Function

Public Function AppPath() As String
' Return the normalized App.Path ...
AppPath = NormalizePath(App.Path)

End Function

Now you get a consistent App.Path easily by calling the AppPath
function.

—Chris Hynes, Fort Washington, Md.

14 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB.NET
Level: Intermediate

Use Int16, Int32, and Int64 for API Declarations
When declaring API functions in VB.NET, use Int16, Int32, and Int64
rather than Short, Integer, and Long, respectively, to avoid pos-
sible confusion with VB6 declarations. Note: In VB6, Long is 32-bit
and Integer is 16-bit, whereas in VB.NET, Long is 64-bit and Integer
is 32-bit.

—Bill McCarthy, Barongarook, Victoria, Australia

VB5, VB6
Level: Intermediate

Make the Background of Your
RichTextBox Controls Transparent
If you plan to require Windows 2000 for your application, you can
make your standard VB RichTextBox control 100-percent trans-
parent with a few simple API calls. To try this tip, create a new
project (or use an existing one), add a RichTextBox control, and
add this code and these declarations in a standard module:

Option Explicit

' Win32 APIs.
Private Declare Function GetWindowLong _

Lib "user32" Alias "GetWindowLongA" _
(ByVal hWnd As Long, _
ByVal nIndex As Long) As Long

Private Declare Function SetWindowLong _
Lib "user32" Alias "SetWindowLongA" _
(ByVal hWnd As Long, ByVal nIndex As Long, _
ByVal dwNewLong As Long) As Long

Private Declare Function SetWindowPos Lib "user32" _
(ByVal hWnd As Long, ByVal hWndInsertAfter As _
Long, ByVal X As Long, ByVal Y As Long, _
ByVal cx As Long, ByVal cy As Long, _
ByVal wFlags As Long) As Long

' Style bits.
Private Const GWL_EXSTYLE As Long = (-20)
Private Const WS_EX_TRANSPARENT As Long = &H20

' Force total redraw that shows new styles.
Private Const SWP_FRAMECHANGED = &H20
Private Const SWP_NOMOVE = &H2
Private Const SWP_NOZORDER = &H4
Private Const SWP_NOSIZE = &H1

Public Function Transparent(ByVal hWnd As Long, _
Optional ByVal Value As Boolean = True) As _
Boolean

Dim nStyle As Long
Const swpFlags As Long = _

SWP_FRAMECHANGED Or SWP_NOMOVE Or _
SWP_NOZORDER Or SWP_NOSIZE

' Get current style bits.
nStyle = GetWindowLong(hWnd, GWL_EXSTYLE)
' Set new bits as desired.
If Value Then

nStyle = nStyle Or WS_EX_TRANSPARENT
Else

nStyle = nStyle And Not WS_EX_TRANSPARENT
End If
Call SetWindowLong(hWnd, GWL_EXSTYLE, nStyle)
' Force redraw using new bits.
SetWindowPos hWnd, 0, 0, 0, 0, 0, swpFlags
' Make sure new style took.
Transparent = _

(GetWindowLong(hWnd, GWL_EXSTYLE) = nStyle)
End Function

You can use this function to toggle the transparency of your
RichTextBox controls at will:

Private Sub Check1_Click()
Call Transparent(RichTextBox1.hWnd, _

(Check1.Value = vbChecked))
End Sub

To be on the safe side, check the OS version before making
these calls, as the effects can be rather unpleasant in the
wrong environment.

That’s it! A simple call to Get/SetWindowLong retrieves the
current extended style bits and adds the standard TRANSPARENT
style so the window becomes transparent. Note, if you change the
style after the control is visible, you need to force the screen to
repaint to see the effect.

—John Cullen, Pedroucos, Portugal

VB4, VB5, VB6
Level: Beginning

Duck the Modal Form PopupMenu Bug
Microsoft confirms this bug: If an application contains at least two
forms, and one of those forms is displayed modally using a
PopupMenu on another form, a PopupMenu on the modal form
won’t be displayed. Knowledge Base article Q167839 - BUG:
PopupMenu on Modal Form Not Displayed suggests using a Timer
control as a workaround for this problem. My solution sets a flag
variable in the first form’s menu procedure, which is then acted
upon after the popup is dismissed.

Start a new Standard EXE project. Form1 is added by default.
Add another form (Form2) to the project. On Form1, create an
invisible menu (mnuFile) with the caption “File” that has a submenu
(mnuOpen) with the caption “Open”. On Form2, create an invisible
menu (mnuEdit) with the caption “Edit” that has a submenu
(mnuFind) with the caption “Find”. Then add this code to Form1:

Private bShowForm2 as Boolean

Private Sub Form_Click()
PopupMenu mnuFile
If bShowForm2 Then

bShowForm2 = False
Form2.Show vbModal

End If
End Sub

Private Sub mnuOpen_Click()
bShowForm2 = True

End Sub

Add this code to Form2:

Private Sub Form_Click()
PopupMenu mnuEdit

End Sub

Press F5 to run the program. Click on Form1 to display the File
PopupMenu. Select Open to show Form2 modally. Click on Form2
to display the Edit PopupMenu.

—Peter Gabris, Marietta, Ga.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 15

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB3, VB4, VB5, VB6
Level: Beginning

Open Namespace Objects From VB
As you probably know, you can open an Explorer window on a
directory from VB by using the intrinsic Shell function:

Dim TaskId As Long
TaskId = Shell("Explorer c:\", vbNormalFocus)

But what about items in the namespace that don’t correspond to
physical file system objects, such as the Printers and Task Sched-
uler folders—or My Computer itself, for that matter?

Here’s a little-known trick: You can pass an argument to Ex-
plorer indicating the namespace object by its GUID, and Explorer
dutifully opens it for you. For example, to open Scheduled Tasks,
you could use this:

Dim TaskId As Long
Dim ShellCmd As String
ShellCmd = "Explorer ::{20D04FE0-" & _

"3AEA-1069-A2D8-08002B30309D}" & _
"\::{D6277990-4C6A-11CF-8D87-" & _
"00AA0060F5BF}"

TaskId = Shell(ShellCmd, vbNormalFocus)

Here’s a list of the most common namespace objects and the
equivalent “paths” to pass to Explorer in the Shell command; this
information comes straight from the Windows Registry, which you
can also search for other namespace objects. Now you can open
any of these objects right from within VB:

My Computer
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}

Network Neighborhood
::{208D2C60-3AEA-1069-A2D7-08002B30309D}

Recycle Bin
::{645FF040-5081-101B-9F08-00AA002F954E}

Task Scheduler
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\::{D6277990-4C6A-11CF-8D87-00AA0060F5BF}

Printers
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\::{2227A280-3AEA-1069-A2DE-08002B30309D}

Control Panel
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\::{21EC2020-3AEA-1069-A2DD-08002B30309D}

Dial-up Networking
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\::{a4d92740-67cd-11cf-96f2-00aa00a11dd9}

Web Folders
::{20D04FE0-3AEA-1069-A2D8-08002B30309D}\::{BDEADF00-C265-11D0-BCED-00A0C90AB50F}

—Jason Fisher, Dallas

VS.NET
Level: Beginning

Customize Toolbox Icons
You can create your own custom bitmap to give your UserControl
or component its own unique toolbox icon. Simply add a 16-by-16
bitmap to your project and give it the same name as the compo-
nent; for example, MyComponent.bmp. Set its Build action to
Embedded Resource.

—Bill McCarthy, Barongarook, Victoria, Australia

VB3, VB4, VB5, VB6
Level: Beginning

Keep Selected Areas in Grid Read-Only
I needed to lock a row on a grid to show totals as well as a
percentage row that needed to remain read-only to the user. I
didn’t want to add another grid with a single row for totals as it
didn’t have the flexibility I needed. After some Web searching, I
found this to be a common issue. After much hair-pulling and many
caffeinated beverages, I discovered this simple and basic answer
in one line of code. Enjoy:

Private Sub MyDBGrid_KeyPress(KeyAscii As Integer)
' Whatever row you want to be "locked"
If MyDBGrid.Row = MyTotalsRow Then KeyAscii = 0

End Sub

—Joe Johnston, Chesapeake, Va.

VB6, VBS
Level: Beginning

Quick Split
When you use the Split function from VB6 or VBScript, sometimes
you need only a single value and not the whole array. To do this,
you can reference the element you need right after the Split
statement like this:

Split(myVar, myDelim)(1)

This statement retrieves the second element of the array, ele-
ment 1.

—Judah Reeves, San Diego

VB4, VB5, VB6
Level: Beginning

Zoom Continuously in Your Image-Processing Apps
This code demonstrates how fast you can zoom into images using
VB’s form PaintPicture method. Start a new project containing two
forms named frmClip and frmPicture. frmPicture contains a Shape
control named shpRectangle, an Image control named pic, and all
the code. frmClip contains no code, but it’s the target of the
clipped image within shpRectangle as it is dragged over pic:

' frmPicture
Option Explicit
Private mlTop As Long
Private mlLeft As Long
Private mlRight As Long
Private mlBottom As Long

Private Sub Form_Load()
Me.ScaleMode = vbTwips
With pic

.BorderStyle = 0 ' none

.Move 0, 0

.Picture = LoadPicture(_
"C:\Anderson\Imaging\Images\address.bmp")

.ZOrder vbSendToBack
End With
With shpRectangle

.Shape = 0 ' Rectangle

.BorderStyle = 1 ' solid

.BorderWidth = 2

.DrawMode = 13 'Copy pen

.Visible = False
End With
frmClip.ScaleMode = vbTwips
frmClip.Show

End Sub

Private Sub pic_MouseMove(Button As Integer, _

16 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

Shift As Integer, X As Single, Y As Single)
If Button = vbLeftButton Then

With shpRectangle
.Visible = False 'reduces flickering
mlBottom = Y
mlRight = X

' Don't allow clip to include non-picture
' region
If mlBottom > pic.Height Then _

mlBottom = pic.Height
If mlRight > pic.Width Then _

mlRight = pic.Width
If mlBottom < pic.Top Then _

mlBottom = pic.Top
If mlRight < pic.Left Then _

mlRight = pic.Left

' Swap top/bottom as necessary
If mlBottom < mlTop Then

.Top = mlBottom

.Height = mlTop - mlBottom
Else

.Top = mlTop

.Height = mlBottom - mlTop
End If

' Swap left/right as necessary
If mlRight < mlLeft Then

.Left = mlRight

.Width = mlLeft - mlRight
Else

.Left = mlLeft

.Width = mlRight - mlLeft
End If

.Visible = True

DoEvents ' Allow rectangle to draw
frmClip.PaintPicture pic.Picture, 0, 0, _

frmClip.ScaleWidth, _
frmClip.ScaleHeight, _
.Left - pic.Left, .Top - pic.Top, _
.Width, .Height

End With
End If

End Sub

Private Sub pic_MouseDown(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
If Button = vbLeftButton Then

mlTop = Y
mlLeft = X

End If
End Sub

Private Sub pic_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)
shpRectangle.Visible = False

End Sub

—Graeme Anderson, Blackburn, Australia

VB5, VB6
Level: Intermediate

Merge VBL Files Into Your Registry
Use this tip when developing ActiveX components and testing
ActiveX OCXs that require license files. These Registry entries
allow you to merge VBL file contents into the Registry. You add
three context menu options for VBL files: Merge (into the Regis-
try), Edit, and Print:

REGEDIT4

[HKEY_CLASSES_ROOT\.vbl]
@="VisualBasic.VBLFile"

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile]
@="Visual Basic Control License File"

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\DefaultIcon]
@="NOTEPAD.EXE,1"

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell]

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\edit]
@="&Edit"

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\edit\command]
@="NOTEPAD.EXE \"%1\""

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\open]
@="Mer&ge"

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\open\command]
@="regedit.exe \"%1\""

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\print]

[HKEY_CLASSES_ROOT\VisualBasic.VBLFile\shell\print\command]
@="NOTEPAD.EXE /P \"%1\""

Editor’s Note: All the usual warnings apply, of course, when running
scripts against your Registry.

—Tom Sweet, Marietta, Ga.

VB4, VB5, VB6
Level: Beginning

Use the Keyboard for Extra-Fine Sizing and
Positioning
If you have a sensitive mouse and/or many objects you need to
position carefully on a form, getting everything right can be a real
pain—especially when you click on an object simply to alter some
of its properties and move it accidentally. Here’s the answer: Use
the “Lock Controls” option under the Format menu to lock the
position of a form’s controls so you can’t change control positions
accidentally when clicking on the controls. But now you can’t use
the mouse to reposition a control without unlocking everything.
However, you can use the keyboard. Simply select the control
whose position you want to change and combine the Ctrl key and
arrow keys to move the control, or the Shift key and arrow keys to
resize it. The grid spacing you’ve configured (Tools | Options |
General) controls the move/size extent per arrow press.

—John Cullen, Pedroucos, Portugal

SEPTEMBER 2001 Supplement to Visual Studio Magazine 17

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB4, VB5, VB6
Level: Intermediate

Override the Err Object
Believe it or not, you can override VB’s built-in Err object to add
functionality the Err object doesn’t offer. Create a class called
CError, then add this property procedure:

Public Property Get Number() As Long
Number = VBA.Err.Number

End Property

Now create a BAS module and add this code:

Public Function Err() As CError
Static oErr As CError
If oErr Is Nothing Then

Set oErr = New CError
End If
Set Err = oErr

End Function

Now you can retrieve the custom CError object anywhere in your
project that you reference the Err object. Of course, you want to
add support for standard properties and methods such as De-
scription, Source, Raise, and so on. You can also add support for
other things:

• Err.Line (could return the Erl)
• Err.Log (could log the error to a text file or the event log)
• Err.FullDescription (could wrap the number, source, and de-

scription into one nicely formatted string)
• Err.Stack (could return stack trace information)
• Err.Show (could display a nicely formatted message box de-

scribing the error)

The nice thing about this approach is that it consolidates all your
error-handling code neatly into what appears to be the Err object
itself.

—Darin Higgins, Fort Worth, Texas

VB5, VB6
Level: Beginning

Copy an Array Faster, Redux
Simple is usually best. The “Copy an Array Faster” tip in the 11th
Edition of “101 Tech Tips for VB Developers” [Visual Basic
Programmer’s Journal March 2001] describes a method that uses a
low-level approach to accelerate array copying. VB4 introduced
direct assignment to Byte arrays, and VB5 later expanded that
capability to include other array types as well.

This code does the same thing as the previous tip, with the
same performance improvement:

Dim IntArray1() As Integer
Dim IntArray2() As Integer
ReDim IntArray1(1 To 6000000)
ReDim IntArray2(1 To 6000000)
IntArray2 = IntArray1

As the old saying goes: “Keep it simple, stupid.” The previous tip
is still useful for copying portions of arrays, but use direct assign-
ment if you need to copy the entire array.

—Dave Doknjas, Surrey, British Columbia

VB5, VB6
Level: Intermediate

Sort Arrays Faster
When an array is declared as a type where each element occupies
a lot of memory (such as a complex user-defined type), sorting the
array can become unacceptably slow. To speed things up, the data
contained within the array shouldn’t be moved in memory any
more than necessary.

To achieve this, you can set up a second array of integers that
contains the indexes of the main array. Your sorting algorithm
changes the order of the index array based on comparisons
within the main array. When the process is complete, the main
array has not been changed but the index array now contains the
indexes of the main array in the sorted order. From this point,
you can reorder the main array using the index array, which you
can then discard:

Dim Idx() As Long ' index array
Dim Data() As EmployeeData ' data array of UDT

Compare elements of the main array during sorting:

Data(Idx(i)).LastName < Data(Idx(a)).LastName

Reorder elements of the index array during sorting:

tmp = Idx(a)
Idx(a) = Idx(i)
Idx(i) = tmp

Copy the data array to a reference array:

Dim Ref() As EmployeeData ' reference array
Ref = Data

Populate the data array in the correct order using the reference
array and the index array:

For i = LBound(Data) To UBound(Data)
Data(i) = Ref(Idx(i))

Next

Although this process can be many times faster than reordering
the main array using the sorting algorithm, it can still take a long
time. To save more time, you don’t need to reorder the main array
at all. Instead, whenever you need to access the data in the main
array in order, simply refer to its elements using the index array.
For example:

Text1.Text = Data(Idx(i)).LastName

Unfortunately, using the main array with the index array can cause
complications. Sometimes you need to reflect changes made to
the main array in the index array. This can be difficult because the
main array does not contain information about the index array.
Therefore, changing key data in the main array requires reindexing
to keep things in sync.

—Steele Cheffers, Perth, Western Australia

VB4, VB5, VB6, VBA
Level: Beginning

Use the Format Function for Regional Settings
Although the GetLocaleInfo API can retrieve just about any re-
gional setting you need, VB’s own Format function also can be
useful for quick-and-dirty answers to some settings. For example,
use this code to read the regional setting for the numeric decimal
symbol and thousands separators:

strDecimal = Format$(0, ".")
strThousands = Mid$(Format$(1000, "0,0"), 2, 1)

—John Sevarts, Heerlen, Netherlands

18 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB4/32, VB5, VB6, VBS
Level: Intermediate

Create a Duplicate Recordset
The Clone method doesn’t quite fit the bill when you want to create
a duplicate recordset—it gives you two pointers to the same
recordset, so any updates or deletes you make in one will be
reflected in the other. This isn’t always desirable.

You can create a true duplicate recordset easily using ADO 2.5
(or later) while avoiding a second trip to the server. Use the Stream
object as an intermediary to hold the necessary XML and pass that
XML back into a second Recordset object:

Dim rsOne As New ADODB.Recordset
Dim rsTwo As New ADODB.Recordset
Dim oTempStream As New ADODB.Stream
'Assumes rsOne has been populated with data
rsOne.Save oTempStream, adPersistXML
rsTwo.Open oTempStream

The catch: The second Recordset will be a client-side cursor.
If you want to commit any changes back to your database, you
must establish a new connection, set it on the Recordset, and call
UpdateBatch.

—Larry Johnson

VB.NET
Level: Beginning

Instantiate an Object Inline
You can instantiate a new instance of an object inline, making your
code more compact. This example shows both versions:

Imports System

Public Class Author
Private fName As String
Private lName As String

Public Sub New(ByVal fName As String, ByVal lName As _
String)
me.fName = fName
me.lName = lName

End Sub

Public ReadOnly Property FullName() As String
Get

Return fName & " " & lName
End Get

End Property
End Class

Public Class Test
Public Shared Sub Main()

'This is the more verbose method
Dim author As Author = _

New Author("Jon", "Goodyear")
Console.WriteLine(author.FullName)

'This is the less verbose method
Console.WriteLine(_

New Author("Jon", "Goodyear").FullName)
End Sub

End Class

—Jonathan Goodyear, Orlando, Fla.

VB3, VB4, VB5, VB6, VBA, VBS
Level: Beginning

Lock Windows 2000 Instantly
Locking an NT workstation has never been easy. Windows 2000
has a new function, LockWorkStation, that can lock the machine
instantly with a single API call:

Private Declare Function LockWorkStation Lib _
"user32.dll" () As Long

Call LockWorkStation

In fact, because this function requires no parameters, you can
reduce the code to a single line, as well as make it callable from 16-
bit code, by invoking it through rundll32:

Call Shell("rundll32 user32.dll,LockWorkStation", _
vbNormalFocus)

The workstation locks instantly when this line is executed. Here’s
the equivalent VBS code:

Dim WshSHell
Set WshShell = CreateObject("WScript.Shell")
WshShell.Run("rundll32 user32.dll,LockWorkStation")

—Brian Abernathy, Marietta, Ga.

VB4, VB5, VB6
Level: Beginning

Enable and Disable Frames
I’ve had problems enabling and disabling frame controls in Visual
Basic. If a frame is set to disabled, all the controls within the frame
are disabled—but they still look enabled. So I created a simple
function that loops through all controls, locating those on a
specific frame, and enables or disables them as requested:

Private Sub EnableFrameControls(_
fra As Frame, ByVal Enabled As Boolean)

Dim ctl As Control
On Error Resume Next
For Each ctl In Me.Controls

If ctl.Container Is fra Then
ctl.Enabled = Enabled

End If
Next ctl
fra.Enabled = Enabled

End Sub

—Chris O’Connor, Wantirna South, Victoria, Australia

VB5, VB6
Level: Beginning

Skip Object Declaration Using “With” Keyword
If you want to use an object in the middle of a routine and avoid
declaring the object in the routine, simply use this syntax:

With New <object classname>
.<method/property>

End With

This is the equivalent of:

Dim X as New <object classname>
With X

.<method/property>
End With
Set X = nothing

—Kevin Alons, Salix, Iowa

SEPTEMBER 2001 Supplement to Visual Studio Magazine 19

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

✰✰✰✰✰ Five Star Tip
VB5, VB6
Level: Advanced

Use Argument Arrays With CallByName
VB6 introduced a new built-in function, CallByName(), as a mem-
ber of VBA.Interaction. It lets you reference an object’s method or
property by passing its name as an argument. The syntax is:

result=CallByName(Object, ProcName, _
CallType [,ParamArrayArgs])

Unfortunately, this function has several restrictions: It’s acces-
sible from VB6 only; when an error is raised in an ActiveX proce-
dure called with the CallByName() function from a client, the
client always gets “error 440” regardless of the original error
number being raised (for details, see Microsoft Knowledge Base
article Q194418 – PRB: CallByName Fails to Return the Correct Error
Information); and the type of the last argument is ParamArray, so
you can’t create a dynamic list of arguments into one statement.
For example, the first and second Call statements of this code
don’t work:

Dim x(1)
x(0) = 1: x(1) = 2
'--(1) Error (dynamic list):
Call CallByName(Me, "xx", VbMethod, x)
'--(2) Error:
Call CallByName(Me, "xx", VbMethod, Array(1, 2))
'--(3) OK:
Call CallByName(Me, "xx", VbMethod, 1, 2)

Function xx(x1, x2)
'--do something here--
End Function

However, you can build your own CallByName function using
TypeLib information (TLBINF32.dll) for VB5/6 applications with-
out pointed restrictions:

' Required for use in VB5!
Public Enum VbCallType

VbMethod = 1
VbGet = 2
VbLet = 4
VbSet = 8

End Enum

Public Function CallByNameEx(Obj As Object, _
ProcName As String, CallType As VbCallType, _
Optional vArgsArray As Variant)
Dim oTLI As Object
Dim ProcID As Long
Dim numArgs As Long
Dim i As Long
Dim v()

On Error GoTo Handler

Set oTLI = CreateObject("TLI.TLIApplication")
ProcID = oTLI.InvokeID(Obj, ProcName)

If IsMissing(vArgsArray) Then
CallByNameEx = oTLI.InvokeHook(_

Obj, ProcID, CallType)
End If

If IsArray(vArgsArray) Then
numArgs = UBound(vArgsArray)
ReDim v(numArgs)
For i = 0 To numArgs

v(i) = vArgsArray(numArgs - i)
Next i
CallByNameEx = oTLI.InvokeHookArray(_

Obj, ProcID, CallType, v)

End If
Exit Function

Handler:
Debug.Print Err.Number, Err.Description

End Function

You must use this syntax to call the CallByNameEx() function:

Call CallByNameEx(Me, "xx", VbMethod, x)
Call CallByNameEx(Me, "xx", VbMethod, Array(1, 2))
Result=CallByNameEx(Me, "xx", VbMethod, x)

x is an array containing the same number of elements as the called
procedure has parameters. The CallByNameEx() function returns
a real error number from a calling procedure. For VB5, you must
define the VbCallType Enum used by the third parameter of
CallByNameEx(), or use ordinary integers in place of the Enum.

—Vladimir Olifer, Staten Island, N.Y.

VB3, VB4, VB5, VB6
Level: Beginning

Select Case Enhancement
In the January 2000 issue of Visual Basic Programmer’s Journal, Ron
Schwarz wrote a nice article on VB Masonry (“VB Masonry:
Applying Mortar to the Bricks”). I have found the need to do
multiple tests on dissimilar variables and objects with any failing
test causing an action. Multiple embedded If...Then...ElseIf...EndIf
statements are awful to look at and troubleshoot. I found that using
Select Case does the trick and is easy to read. Consider testing
several items before continuing (whether to check during entry or
after is another subject). Try this:

Private Function okToPost() As Boolean
' Assume it's safe to post.
okToPost = True

Select Case False
' Assume you want your tests to be True
' Any tests that evaluate to False will
' trigger the case code.
Case (lvDist.ListItems.Count > 0)

' Any items in a listview control?
MsgBox "No Items Selected", _

vbInformation, "Post"
okToPost = False

Case IsNumeric(fvCheckNumber)
' Did the user enter a valid number?
MsgBox "Invalid Check Number", _

vbInformation, "Post"
okToPost = False
fvCheckNumber.SetFocus

Case (fvInvoiceAmount = fvCheckAmount)
' Does this balance?

' More case statements can follow that
' evaluate to true or false

End Select
End Function

—Timothy P. Sullivan, Fort Wayne, Ind.

20 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

SQL Server 6.5 and up
Level: Intermediate

Use the CASE Statement in a SQL SELECT Clause
SQL Server provides a mechanism for returning different
values in a SELECT clause based on Boolean conditions: the
CASE statement. This statement resembles Visual Basic’s Select
Case statement.

The SQL CASE statement has WHEN, THEN, and ELSE clauses
along with an END terminator. The syntax is:

CASE [expression]
WHEN [value | Boolean expression] THEN [return value]
[ELSE [return value]]

END

The [expression] is optional and contains a table column or a
variable. When you specify [expression] directly after the CASE,
you must populate the [value] parameter in the WHEN clause:

DECLARE @TestVal int
SET @TestVal = 3

SELECT
CASE @TestVal

WHEN 1 THEN 'First'
WHEN 2 THEN 'Second'
WHEN 3 THEN 'Third'
ELSE 'Other'

END

SQL Server compares this value to the expression and when the
values match, it returns the THEN clause’s [return value]. If none
of the WHEN clauses equates to true, SQL Server returns the
[return value] in the optional ELSE clause. If the ELSE clause is
omitted and no value is matched, NULL is returned.

If you don’t specify [expression], you must include the [Bool-
ean expression] in the WHEN clause. This can contain any valid
Boolean expression SQL Server allows:

DECLARE @TestVal int
SET @TestVal = 5

SELECT
CASE

WHEN @TestVal <=3 THEN 'Top 3'
ELSE 'Other'

END

—Jason Rein, Thompson’s Station, Tenn.

VB3, VB4, VB5, VB6
Level: Beginning

Determine the Last Day of the Month
Todd Knudsen submitted a tech tip [“Find the Last Day of a
Month,” Visual Basic Programmer’s Journal April 2001] with a
function called FindEOM(ADate As Variant) that calculates the
end of a month:

NextMonth = DateAdd("m", 1, ADate)
FindEOM = NextMonth - DatePart("d", NextMonth)

You can accomplish the same thing with one line of code:

FindEOM = DateSerial(Year(ADate), Month(ADate) + 1, 0)

Setting the day parameter of DateSerial to 0 always returns the day
prior to day 1, which is the end of the previous month.

—Barry Garvin, Georgetown, Mass.

VB.NET
Level: Beginning

Initialize Fields in Classes
In VB.NET, you can declare a variable and initialize it on the same
line:

Dim x as Int32 = 5

You can also use this code to initialize fields in a class:

Public Class Foo
Private m_Flag As Int32 = 4

...........
End Class

Note: In VB.NET, the base class constructor is called before the
field is initialized. The compiled code is the equivalent of:

Public Class Foo
Private m_Flag As Int32

Public Sub New()
MyBase.New()
m_Flag = 4

End Sub

End Class

—Bill McCarthy, Barongarook, Victoria, Australia

VB4/32, VB5, VB6
Level: Beginning

Stop the Flickering
This code stops the annoying flicker often seen when you pack
an object with data. Test this code with the controls that bother
you most:

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hWnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
lParam As Any) As Long

Private Const WM_SETREDRAW = &HB

Public Function LockControl(objX As Object, _
ByVal bLock As Boolean)
Call SendMessage(objX.hWnd, WM_SETREDRAW, _

bLock, ByVal 0&)
If bLock = False Then

On Error Resume Next
objX.Refresh

End If
End Function

—Andre Beneke, Reitz, South Africa

VS.NET
Level: Beginning

Increase Your Work Area
VS.NET’s auto-hide feature of docked windows enables you to
increase your work area. You can select whether a window stays
displayed or auto-hides by clicking on the drawing pin icon in the
window. One problem you might encounter when using auto-hide
windows: When they roll out, they do so on top of the open
designer window, thereby hiding part of your form or UserControl.
For smaller forms and UserControls, dock the window to the right
side of the screen; then when it rolls out, it won’t cover the form
or UserControl unless either one is extremely large.

—Bill McCarthy, Barongarook, Victoria, Australia

SEPTEMBER 2001 Supplement to Visual Studio Magazine 21

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB4/32, VB5, VB6
Level: Intermediate

Get the Drive Serial Number
You can get the serial number of your hard drive, floppy disk, or
CD-ROM easily without any additional ActiveX component. First,
start a VB project, add a standard module, and place a Command
Button control on the form:

'-- Module code
Private Declare Function GetVolumeInformation _

Lib "kernel32" Alias "GetVolumeInformationA" _
(ByVal lpRootPathName As String, _
ByVal pVolumeNameBuffer As String, _
ByVal nVolumeNameSize As Long, _
lpVolumeSerialNumber As Long, _
lpMaximumComponentLength As Long, _
lpFileSystemFlags As Long, _
ByVal lpFileSystemNameBuffer As String, _
ByVal nFileSystemNameSize As Long) As Long

Public Function GetSerialNumber(_
ByVal sDrive As String) As Long

If Len(sDrive) Then
If InStr(sDrive, "\\") = 1 Then

' Make sure we end in backslash for UNC
If Right$(sDrive, 1) <> "\" Then

sDrive = sDrive & "\"
End If

Else
' If not UNC, take first letter as drive
sDrive = Left$(sDrive, 1) & ":\"

End If
Else

' Else just use current drive
sDrive = vbNullString

End If

' Grab S/N -- Most params can be NULL
Call GetVolumeInformation(_

sDrive, vbNullString, 0, GetSerialNumber, _
ByVal 0&, ByVal 0&, vbNullString, 0)

End Function

'-- Form code
Private Sub Command1_Click()

Dim Drive As String
Drive = InputBox("Enter drive for checking SN")
MsgBox Hex$(GetSerialNumber(Drive))

End Sub

—Predrag Dervisevic, Krusevac, Yugoslavia

VB3, VB4, VB5, VB6
Level: Intermediate

Select Areas Within a Graphics Window
Graphics applications sometimes require users to select a rectan-
gular region of a picture or drawing visually. You need to provide
a resizing box manipulated by the pointer at run time that only
interacts temporarily with the graphics displayed already (down-
load this code).

By assigning vbInvert to the PictureBox DrawMode property
before selection dragging, you can restore the background graph-
ics by redrawing the same rectangle. Once the selection dragging
completes, mRect contains the selected rectangle coordinates.
You can use the same technique to select a circular region or
create the “rubber band” effect.

—James Menesez, Templeton, Calif.

VB6
Level: Beginning

Read a Complete Text File in One Pass
Typically, you read and process a text file by using a loop and VB’s
Line Input statement:

Do While Not Eof(1)
Line Input #1, myStringVar$
' process the line here

Loop

However, you might want to defer processing or keep a copy of
all the lines read for repeat processing or selective editing before
writing them out again. You can achieve this quite easily by using
VB’s Get# and Split() statements to read the entire file at once and
split it into an array containing all the lines. For example, this
function returns the complete contents of a file as a string:

Public Function ReadFile(ByVal FileName As String) _
As String
Dim hFile As Long
Dim bBuf() As Byte

hFile = FreeFile
Open FileName For Binary Access Read As #hFile
If LOF(hFile) > 0 Then

ReDim bBuf(1 To LOF(hFile)) As Byte
Get #hFile, , bBuf
Close #hFile
ReadFile = StrConv(bBuf, vbUnicode)

End If
End Function

This code snippet drops the contents into an array, using the line
break (vbCrLf) as a delimiter:

Dim sLines() As String
Dim sAll As String
Dim i As Long

' Read the contents of some file
sAll = ReadFile("c:\form1.frm")

' Split into individual lines
sLines = Split(sAll, vbCrLf)

You can then process the file as desired; for example, you can
search for specific lines:

For i = LBound(sLines) to UBound(sLines)
If Instr(1, "SomeText", sLines(i), _

vbTextCompare) Then
sLines(i) = "SomeOtherText"

End If
Next i

—John Cullen, Pedroucos, Portugal

VB4, VB5, VB6
Level: Beginning

Add Controls to a Project Quickly
VB’s Add File dialog supports only a single selection of code
modules or OCXs, so you must painstakingly select each indi-
vidual file and control one at a time.

One of my previous tech tips publicized the fact that you can
drag FRM, BAS, CLS, or CTL files from Windows Explorer to the
Projects window in VB and VB adds them instantly to the project.
What I didn’t mention is that you can also drag OCX controls from
Explorer and drop them on the VB6 Toolbox to add OCX controls
to your project just as quickly and easily.

—Darin Higgins, Fort Worth, Texas

22 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB4/32, VB5, VB6
Level: Intermediate

Add Multicharacter Search Capability to Listboxes
Users often complain that listboxes don’t have the same multiple
keypress search capabilities as treeviews and other objects. But
you can simulate this behavior by adding code to a form with a
timer and a listbox whose Sorted property is set to True.

For this test, Form_Load adds some data and sets the default
interval between keystrokes. You can type in “AL” to get to Allan
instead of the first instance of an entry with an “a” in the list. This
can be extremely helpful in long lists. You can also convert this
code easily for use within a custom control:

Option Explicit

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hwnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
lParam As Any) As Long

Private Const LB_FINDSTRING = &H18F
Private Const LB_ERR = (-1)

Private sSearchstring As String

Private Sub Form_Load()
With List1

.AddItem "Adam"

.AddItem "Allan"

.AddItem "Arty"

.AddItem "Aslan"

.AddItem "Barney"

.AddItem "Bob"
End With
Timer1.Interval = 2000

End Sub

Private Sub List1_KeyPress(KeyAscii As Integer)
Dim nResult As Long
Timer1.Enabled = True
sSearchstring = sSearchstring & Chr$(KeyAscii)
With List1

nResult = SendMessage(.hWnd, LB_FINDSTRING, _
.ListIndex, ByVal sSearchstring)

If nResult <> LB_ERR Then
.ListIndex = nResult
KeyAscii = 0

End If
End With

End Sub

Private Sub Timer1_Timer()
sSearchstring = ""
Timer1.Enabled = False

End Sub

—Joseph L. Scally, Stamford, Conn.

VS.NET
Level: Intermediate

Use Locals to Speed Up Code
When working with an object’s fields repetitively in VS.NET, you
can improve performance two-fold by storing the object as a local
variable rather than a field. In VB.NET, when you use the With
myObject ... End With syntax, a local variable is created for
myObject. In C#, you must declare the local variable and set it to
the object.

—Bill McCarthy, Barongarook, Victoria, Australia

VB4/32, VB5, VB6, SQL Server 7.0
Level: Advanced

Execute a SQL Server DTS Package Remotely
You can easily execute a SQL Server 7.0 Data Transformation
Services (DTS) package from VB remotely:

1. Create a DTS package. It can be an import from Excel into SQL
Server.

2. Set a reference to Microsoft DTS Package Object Library in any
VB project. You might need to load SQL Server on the develop-
ment machine.

3. Use the LoadFromSQLServer method on the package object:

Private Sub cmdRefreshCustomers_Click()
Dim oPackage As New DTS.Package
On Error GoTo eh
'Load the package that we created previously
' ("Customer_List").
'Use the global variables for SQL Server name, UserID,
'and Password.
oPackage.LoadFromSQLServer sServername, sUid, sPwd, _

DTSSQLStgFlag_Default, _
"", "", "", "Customer_List", 0

'Execute the Package
oPackage.Execute
MsgBox oPackage.Description, vbInformation, _

"Re-import Excel sheet."
'Clean up.
Set oPackage = Nothing
Exit Sub
eh:
MsgBox Err.Description, vbCritical, _

"Error refreshing Customer List"
'For more sophisticated sample VB code with DTS, go
'to the SQL Server 7 CD and browse these folders:
'devtools\samples\dts\dtsempl1 or 2 or 3.
End Sub

This is a simple, powerful way to take advantage of any DTS
package.

—Steve Simon, Palisades Park, N.J.

VB3, VB4, VB5, VB6
Level: Beginning

Embed Quotation Marks
You use quotation marks in VB to define strings, but how do you
include them in your output? Use whichever of these methods
works the best for you:

Dim strUseChr As String
Dim strUseVar As String
Dim strUseDbl As String

Const Quote As String = """"

strUseChr = "Hello " & Chr$(34) & "VB" & _
Chr$(34) & " World!"

strUseVar = "Hello " & Quote & "VB" & _
Quote & " World!"

strUseDbl = "Hello ""VB"" World!"

Debug.Print strUseChr
Debug.Print strUseVar
Debug.Print strUseDbl

Each one prints:

Hello "VB" World!

—Dave Keighan, Victoria, British Columbia

SEPTEMBER 2001 Supplement to Visual Studio Magazine 23

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VBS
Level: Intermediate

Take a Quick Look at a File
The Windows Script Host (WSH) supports many useful features,
including VBScript’s FileSystemObject object and the ability to
drag and drop filenames. You can drag and drop a data file’s icon
onto the script (or a shortcut to the script) to see the first 10 lines
of a file, or you can click on it to get an input box. You can specify
any range of lines if you use arguments in the input box. The code
gets the requested lines, puts them in a temporary file, and opens
the temp file in Notepad. This utility can come in handy when you
want to take a quick look at the layout of lines in a large file.

You can download the WSH from Microsoft’s Web site at
http://msdn.microsoft.com/scripting. Be sure to download the
latest release version if the shortcut doesn’t activate with drag-
and-drop. Save this code into a file with a VBS extension, create a
shortcut on your desktop, then take a quick look at the files:

Dim sInputLine, sMain, s
Dim i, iP, iEndFileName
Dim fso, tf, f
Dim nStartPos, iLineCnt
Dim iPopupDelay
Dim varAr

' Edit for your system!
Const TempFile = "C:\Temp\temp.txt"

nStartPos = 1 ' Default first line.
iLineCnt = 10 ' Default number of lines to show.
iPopupDelay = 4 ' Default Popup display, in seconds.

Set objArgs = WScript.Arguments

' If drag and drop was used,
' the argument will be the filename.
If objArgs.Count > 0 Then

sInputLine = objArgs(0)
Else

sInputLine = InputBox(_
"Enter full name of file:" & vbCrLf & vbCrLf _
& "Arguments allowed after the file name:" & _
vbCrLf & " [number of lines to" & _
"show] [line to start at]" & vbCrLf & _
"Use single space for argument separator.", _
"Display Ten Lines of a File", "C:\")

sInputLine = Trim(sInputLine)
End If

' Clean up as we go.
Set objArgs = Nothing

' If the cancel button was clicked, exit.
If sInputLine = "" Then

DisplayMsg "No file name entered."
WScript.quit (0)

End If

' Get start of extension for parsing
' reference point.
i = InstrRev(sInputLine, ".")

' If no extension, exit gracefully.
If i = 0 Then

DisplayMsg "The filename " & sInputLine & _
" has no extension."

WScript.quit (0)
End If

' Check to see If there are arguments at End of
' sInputLine
i = InStr(i, sInputLine, " ")

' first arg = iLineCnt
' second arg = nStartPos (optional)
If i > 0 Then

iEndFileName = i - 1
s = Trim(Mid(sInputLine, i))
If Len(s) > 0 Then

varAr = Split(s, " ")
If UBound(varAr) > 0 Then nStartPos = _

CLng(varAr(1))
iLineCnt = CInt(varAr(0))
s = ""

End If
sInputLine = Left(sInputLine, iEndFileName)

End If

' Use the scripting file system object to retrieve
' file lines.
Set fso = WScript.CreateObject(_

"Scripting.FileSystemObject")

' If the file doesn't exist, exit.
If Not (fso.FileExists(sInputLine)) Then

DisplayMsg "The file " & sInputLine & _
" does not exit."

Set fso = Nothing
WScript.quit (0)

End If

Set tf = fso.OpenTextFile(sInputLine)

' Read iLineCnt file lines starting with line
' nStartPos
i = 1: iP = 0
Do While tf.AtEndOfStream <> True

sMain = tf.ReadLine
If i >= nStartPos Then

s = s & sMain & vbCrLf
iP = iP + 1

End If
i = i + 1
If iP >= iLineCnt Then Exit Do

Loop

tf.Close

' Save file lines string to a temporary file.
Set f = fso.CreateTextFile(TempFile)
f.Write (s)
f.Close

' Use the script host shell method to open the
' temporary file in editor.
Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Run "notepad " & TempFile

Set fso = Nothing
Set WshShell = Nothing

Sub DisplayMsg(sMsg)
Set WshShell = _

WScript.CreateObject("Wscript.Shell")
WshShell.Popup sMsg, iPopupDelay, _

"Exiting Windows Script Host", _
vbOKOnly + vbInformation

Set WshShell = Nothing
End Sub

—Steve Worley, Bainbridge Island, Wash.

24 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB.NET
Level: Intermediate

Arrays With Non-Zero Lower Bounds
In VB.NET, you can use the System.Array class to create an array
with non-zero lower bounds. To do this, use the System.Array.-
CreateInstance method: Array.CreateInstance(Type, Lengths(),
LowerBounds()).

If the array you create has two or more dimensions, you can
cast it to a normal array. This example creates an array of strings
equivalent to Dim sArray(5 To 14, 8 To 27):

Dim Lengths() As Int32 = {10, 20}
Dim LowerBounds() As Int32 = {5, 8}

Dim myArray As Array = _
Array.CreateInstance(GetType(String), _
Lengths, LowerBounds)

' have to declare the array with the correct
' number of dimensions
Dim sArray(,) As String = CType(myArray, _

String(,))

Dim i As Int32
For i = 0 To sArray.Rank - 1

Console.WriteLine _
("dimension {0} , LowerBound = {1}, _

UpperBound = {2}", _
i, sArray.GetLowerBound(i), _
sArray.GetUpperBound(i))

Next

Note: You cannot cast to single dimension arrays because VB.NET
creates them as vectors.

—Bill McCarthy, Barongarook, Victoria, Australia

VB3, VB4, VB5, VB6
Level: Beginning

Copy Filenames to a Clipboard
File hierarchies are becoming more complex and file paths longer
as the capacity of hard drives increases. There are still many
occasions, however, when you can’t browse to identify a file to be
used—for example, when entering a constant in VB source. Nor-
mally, there is no alternative but to type in the path—this can be
both tiresome and error-prone.

The solution: Create a new Standard EXE project, delete the
default form (Form1), and add a module (Module1 by default).
Type this code into Module1:

Sub Main()
Clipboard.SetText Command$

End Sub

Under Project | Project Properties, set the Startup Object to
Sub Main. Give the project a suitable name (for example, filename)
and create the executable (in this case, filename.exe). Create a
shortcut to the executable on your desktop. When the name of file
is required, browse using Explorer or My Computer. Drag the file
and drop it onto the filename shortcut. The full path of the file is
now on the clipboard and you can paste it as necessary.

This works because dropping an object onto a program or
its shortcut starts it with the name of the object in the command
line. The program merely reads the command line and puts it onto
the clipboard.

—M.J. Roycroft, Caversfield, Bicester, Oxfordshire, England

VBS
Level: Beginning

Format Strings in Proper Case
VBScript does not support the StrConv() function, which is useful
to format strings in proper case. Use this algorithm to help you:

Public Function StrConv(_
ByVal psString, ByVal plFormat) 'As String

Dim lsString 'As String
Dim laString 'As String
Dim liCount 'As Integer
Dim lsWord 'As String
Const vbProperCase = 3

lsString = psString

Select Case plFormat
Case vbProperCase

lsString = LCase(lsString)
laString = Split(lsString)
For liCount = 0 To UBound(laString)

lsWord = laString(liCount)
If Len(Trim(lsWord)) > 0 Then

lsWord = UCase(Left(lsWord, 1)) & _
Right(lsWord, Len(lsWord) - 1)

laString(liCount) = lsWord
End If

Next liCount
lsString = Join(laString)

Case Else
End Select

StrConv = lsString
End Function

The sample call StrConv("the pHillIes wiLL PrevaiL", 3) returns the
string 'The Phillies Will Prevail'.

You can use the same name for the corresponding Visual Basic
function to facilitate easy adoption of the native version should it
ever be supported in future releases of VBScript. If desired, you
also can add support for the other StrConv formatting options.
VBScript doesn’t currently support the Mid statement (as op-
posed to the Mid function) either, or you could rewrite this
algorithm more efficiently using that.

—Brian Egras, Philadelphia

VB3, VB4, VB5, VB6
Level: Beginning

Add Nonkeyboard Characters to Your Project
When creating a project or Web page, you sometimes need to use
characters not included on your keyboard—for example, ®, £, §, ©,
1/4 , 1/2 , 3/4, and so on. Sure, you can use the Chr$() function and
create any single character by ASCII code, but you can accomplish
this task in a simpler way.

Hold down the Alt key on a keyboard. Using the numeric
keypad, not the top row numbers, Type 0, then the three-digit ASCII
code of the character. Now release the Alt key. For example, to
enter the copyright symbol into a string literal, type Alt-0169.

You’ll see the designated character on the screen without any
additional coding functionality. Easy, isn’t it? All you need to know
is the ASCII code of the character you want to use. You can look this
up in the MSDN Library under Index: ASCII character set (Charac-
ter Set 128-255), or—easier still—fire up the Character Map applet
that comes with Windows.

Be aware that although most text fonts follow mostly standard
character mapping, deviations are common, and all bets are off if
you end up with a symbol font.

—Alex Grinberg, Holland, Pa.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 25

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB4/32, VB5, VB6
Level: Intermediate

Create Unconventional Windows to Dazzle Users
When designing a portion of an application that must grab users’
attention quickly—such as your company’s splash screen—you
might want to create a nonrectangular window. This code shows
you how to create a V-shaped window based on nine points:

Private Type POINTAPI
x As Long
y As Long

End Type

Private Declare Function SetWindowRgn Lib "user32" _
(ByVal hWnd As Long, ByVal hRgn As Long, _
ByVal bRedraw As Boolean) As Long

Private Declare Function CreatePolygonRgn _
Lib "gdi32" (ByRef lpPoint As POINTAPI, _
ByVal nCount As Long, _
ByVal nPolyFillMode As Long) As Long

Private Sub Form_Load()
Dim lhandle As Long
Dim lpPoint(0 To 8) As POINTAPI

lpPoint(0).x = 0
lpPoint(0).y = 0
lpPoint(1).x = 20
lpPoint(1).y = 150
lpPoint(2).x = 60
lpPoint(2).y = 150
lpPoint(3).x = 80
lpPoint(3).y = 0
lpPoint(4).x = 52
lpPoint(4).y = 0
lpPoint(5).x = 46
lpPoint(5).y = 120
lpPoint(6).x = 40
lpPoint(6).y = 120
lpPoint(7).x = 32
lpPoint(7).y = 0
lpPoint(8).x = 0
lpPoint(8).y = 0

lhandle = CreatePolygonRgn(lpPoint(0), 9, 1)
Call SetWindowRgn(Me.hWnd, lhandle, True)

End Sub

—Andrew Holliday, Phoenix

VB3, VB4, VB5, VB6
Level: Beginning

Close All Child Forms in One Shot
In MDI applications, a user might have two or three or even more
MDI child windows open at any given time. But in applications
where you have user log-in and log-out security, you likely want to
unload all open forms when the user logs out. To accomplish this,
use this small piece of code:

Do Until MDIform1.ActiveForm Is Nothing
Unload MDIform1.ActiveForm

Loop

If you need to save any values in any form by default, you can
include a call to the appropriate Save method in the Unload event
of that form.

—Unnikrishnan Thampy, Floral Park, N.Y.

VB3, VB4, VB5, VB6
Level: Beginning

Return Roman Numerals
This VB procedure returns decimal numbers (integers) as Roman
numerals (a string), ranging from 1 to 4999. Numbers outside this
range return the same number as a string. The optional parameter
iStyle allows two different numerical styles: standard (4 = iv, 9 = ix,
and so on) when iStyle = -1, or classical (4 = iiii, 9 = viiii, and so on)
when iStyle = -2.

The variable x should make the function more efficient, al-
though you might not notice the time saved on a fast machine:

Public Function Roman(ByVal n As Integer, _
Optional iStyle As Integer = -1) As String

If n < 1 Or n >= 5000 Then
Roman = CStr(n)
Exit Function

End If

If iStyle <> -2 Then iStyle = -1

Dim sRtn As String, i As Integer, x As Integer
Dim r(1 To 13) As String, v(1 To 13) As Integer

r(1) = "i": v(1) = 1
r(2) = "iv": v(2) = 4
r(3) = "v": v(3) = 5
r(4) = "ix": v(4) = 9
r(5) = "x": v(5) = 10
r(6) = "xl": v(6) = 40
r(7) = "l": v(7) = 50
r(8) = "xc": v(8) = 90
r(9) = "c": v(9) = 100
r(10) = "cd": v(10) = 400
r(11) = "d": v(11) = 500
r(12) = "cm": v(12) = 900
r(13) = "m": v(13) = 1000

x = UBound(v)
sRtn = ""
Do

For i = x To LBound(v) Step iStyle
If v(i) <= n Then

sRtn = sRtn & r(i)
n = n - v(i)
x = i
Exit For

End If
Next i

Loop Until n = 0

Roman = sRtn
End Function

—Steven Digby, London

VB3, VB4, VB5, VB6
Level: Beginning

Code an Event Procedure for Each Textbox
If you want to code an event procedure (such as GotFocus) for
each textbox on a freshly designed form, you must switch
manually from the Change event to the GotFocus event for each
one. This can be annoying and tedious, especially when many
textboxes don’t belong to a control array. To get around this,
double-click on each textbox on the form to generate an empty
Change event procedure. Then do a find-and-replace, searching
for “_Change” and replacing it with “_GotFocus”. Be careful not
to do a “Replace All” unless there’s very little other code in that
form module already.

—Thomas R. Weiss, Deerfield, Ill.

26 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

VB5, VB6
Level: Intermediate

Use Hidden Enum Bounds
Enumerated parameters don’t prevent you from passing unenu-
merated data to the function. Let’s say you have this enumeration:

Public Enum geAccessType
ReadOnly = 1
WriteOnly = 2
ReadWrite = 3
NoAccess = 4

End Enum

And you have this function:

Public Function DoSomeJob(_
eType As geAccessType) As Long
MsgBox eType

End Function

You can call this function like this:

'call #1
DoSomeJob ReadOnly

You can also call it like this, passing a value other than the
enumerated constants:

'call #2
DoSomeJob 45

In any case, it works.
If you add two variables to the enumeration and modify your

function implementation, you can prevent out-of-bounds cases
such as call #2 easily:

Public Enum geAccessType
[_minAccessType] = 1
ReadOnly = 1
WriteOnly = 2
ReadWrite = 3
NoAccess = 4
[_maxAccessType] = 4

End Enum

Public Function DoSomeJob(_
eType As geAccessType) As Long
Select Case eType

Case geAccessType.[_minAccessType] To _
geAccessType.[_maxAccessType]

MsgBox eType
Case Else

'raise error or do something else
End Select

End Function

By default, [_minAccessType] or [_maxAccessType] do not ap-
pear in the constant list. If you want to see them, open the Object
Browser, right-click inside it, and select Show Hidden Members.

—Russ Kot, Northbrook, Ill.

VB4/32, VB5, VB6
Level: Intermediate

International Test for Illegal Characters
I was interested to read the tip “Test for Illegal Characters” in the
10th Edition of the “101 Tech Tips for VB Developers” supplement
[Visual Basic Programmer’s Journal February 2000]. The tip, how-
ever, has two significant drawbacks as published. First, it requires
a function from the SHLWAPI DLL, which requires either Win98/
2000 or Win95/NT with Internet Explorer 4.0 or higher. Second, it
only works, as presented, for U.S. (7-bit) character sets, requiring
those of us who work with international character sets (such as
accented characters) to consider which characters will be legal
where our apps run.

Luckily, Windows has the solution: the IsCharAlphaNumeric
function, defined in User32.dll. This function uses the currently
defined locale when performing comparisons, thereby allowing
full use of accented characters. This sample demonstrates how
you might use this function:

Public Declare Function IsCharAlphaNumeric Lib _
"user32" Alias "IsCharAlphaNumericA" (_
ByVal cChar As Byte) As Long

Public Function IsAlphaNum(ByVal sInput As String) _
As Boolean
Dim fCheck As Boolean
Dim i As Integer

' Assume non-alphanumeric
fCheck = False

' If we don't have any input, drop out
If Len(sInput) Then

i = 0
Do

i = i + 1
fCheck = _

CBool(IsCharAlphaNumeric(_
Asc(Mid$(sInput, i, 1))))

Loop While fCheck And (i < Len(sInput))
End If
IsAlphaNum = fCheck

End Function

You may pass any single or multiple character string to the
function IsAlphaNum. The return value will be True if all charac-
ters are alphanumeric and False otherwise.

Windows also has several other useful functions for working
with characters in the current locale. Note, however, that all
functions require a byte to be passed, which you can achieve by
passing the Asc() value of a given character (see previous example):

' Check if a given character is alphabetic
Public Declare Function IsCharAlpha Lib "user32" _

Alias "IsCharAlphaA" (ByVal cChar As Byte) _
As Long

' Check if a given character is lowercase
Public Declare Function IsCharLower Lib "user32" _

Alias "IsCharLowerA" (ByVal cChar As Byte) _
As Long

' Check if a given character is uppercase
Public Declare Function IsCharUpper Lib "user32" _

Alias "IsCharUpperA" (ByVal cChar As Byte) _
As Long

—John Cullen, Pedroucos, Portugal

SEPTEMBER 2001 Supplement to Visual Studio Magazine 27

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

VB5, VB6
Level: Intermediate

Use CopyFromRecordset With ODBC Recordsets
You can create an ODBCDirect recordset for use with the Excel
Range object’s CopyFromRecordset method by using the
DAO.Connection object’s OpenRecordset method:

Public Function CreateDaoRecordset(_
ByVal sDataSource As String, _
ByVal sUser As String, _
ByVal sPwd As String, _
ByVal sSql As String) _
As DAO.Recordset

Dim daoWs As Workspace
Dim daoConn As DAO.Connection
Dim sConn As String
Dim dbEng As DBEngine
Set dbEng = New DBEngine
Set daoWs = dbEng.CreateWorkspace("", "admin", _

"", dbUseODBC)
sConn = "ODBC;DSN=" & sDataSource & ";UID=" _

& sUser & ";PWD=" & sPwd
Set daoConn = daoWs.OpenConnection("", , , sConn)
Set CreateDaoRecordset = _

daoConn.OpenRecordset(sSql, dbOpenSnapshot)
End Function

The CopyFromRecordset method also works with Oracle8 data-
bases. The trick: You must use a proper ODBC driver. The Microsoft
ODBC driver for Oracle, msorcl32.dll version 02.573.3513.0, doesn’t
support the NUMBER data type in this method. The Oracle ODBC
driver, sqora32.dll version 8.0.5.0.0, treats the NUMBER(n) data
type as a dbDecimal and generates “Unspecified Automation
Error” in the CopyFromRecordset method. But it accepts the
NUMBER data type (without precision), interpreting it as a
dbDouble.

CopyFromRecordset doesn’t copy column names to the Excel
worksheet for further data analysis or reporting, so use this simple
code instead. It copies column names to the first row of the active
Excel worksheet oWsh and copies all data from the daoRs
Recordset. The code assumes oWsh and daoRs have been de-
clared and initialized elsewhere:

oWsh.Activate
 For iCol = 0 To daoRs.Fields.Count - 1

oWsh.Cells(1, iCol + 1).Value = _
daoRs.Fields(iCol).Name

 Next
 oWsh.Range("A2").CopyFromRecordset daoRs

—Leonid Strakovskiy, New York

SQL Server 6.5 and up
Level: Beginning

Simple Way to Debug a Stored Procedure
Debugging stored procedures can be a headache, but here’s an
easier way to trace a stored procedure’s execution: Use the PRINT
statement. PRINT lets you output and analyze variable values,
which is sometimes good enough. Note a few restrictions when
using PRINT:

1. You can use only Char or VarChar data types. You must
convert other data types to Char or VarChar in order to “print”
them out.

2. The printed string can be up to 8,000 characters long; any
characters after 8,000 are truncated. (SQL Server 6.5 up to 255
characters long.)

3. SQL Sever 6.5 doesn’t allow inline concatenation of variables.
SQL Server 7.0 and 2000 don’t have this limitation.

—Alex Grinberg, Holland, Pa.

VB3, VB4, VB5, VB6
Level: Intermediate

Format Color for HTML
This function, which converts a color value into a string suitable
for HTML, formats an RGB color value, palette index, or system
color constant. You accomplish this by breaking out the individual
color values for red, green, and blue, then recombining them in the
opposite order Windows likes, so HTML renderers will provide the
correct color. The call to OleTranslateColor ensures you’re using
an actual color reference, by dereferencing system color con-
stants or palette indices:

Public Function HtmlHexColor(ByVal ColorValue As _
Long) As String
Dim r As Byte
Dim g As Byte
Dim b As Byte

' convert color if needed
Call OleTranslateColor(_

ColorValue, 0&, ColorValue)

' break out color bytes
r = (ColorValue Mod &H100)
g = (ColorValue \ &H100) Mod &H100
b = (ColorValue \ &H10000) Mod &H10000

' format the return string
HtmlHexColor = "#" & _

Right$("0" & Hex$(r), 2) & _
Right$("0" & Hex$(g), 2) & _
Right$("0" & Hex$(b), 2)

End Function

—Monte Hansen, Ripon, Calif.

VBS
Level: Beginning

Use the Immediate If Function in VBScript
Visual Basic includes the Immediate If function (IIf), but VBScript
(VBS) does not. However, you can copy this code to VBS to allow
the IIf function to be used:

'VB Function not included in VBS
Function IIf(Expression, TruePart, FalsePart)

If Expression = True Then
If IsObject(TruePart) Then

Set IIf = TruePart
Else

IIf = TruePart
End If

Else
If IsObject(FalsePart) Then

Set IIf = FalsePart
Else

IIf = FalsePart
End If

End If
End Function

The function can return both objects and basic data types. Here’s
a sample function from an ASP page that calls the IIf function:

' Return a True or False value for a checkbox
Function CheckBoxValue(Name)

CheckBoxValue = _
IIf(Request.Form(Name) = "on", True, False)

End Function

—Conrad Sollitt, Los Angeles

28 Supplement to Visual Studio Magazine SEPTEMBER 2001

101 TECH TIPS
For Visual Studio Developers

✰✰✰✰✰ Five Star Tip
VB4/32, VB5, VB6
Level: Advanced

Override Built-In Keywords
You can override some of the built-in VB keywords with your own
version of the function. For instance, FileDateTime is a handy built-
in function in VB, but it suffers from one big problem: It can’t set
the date/time of a file. By overriding the built-in function, however,
you can provide this feature. With this approach, the function can
determine for itself how it is being used and perform accordingly.

You can override a number of keywords and functions in this
manner:

Private Declare Function SystemTimeToFileTime Lib _
"kernel32" (lpSystemTime As SYSTEMTIME, _
lpFileTime As FILETIME) As Long

Private Declare Function LocalFileTimeToFileTime _
Lib "kernel32" (lpLocalFileTime As FILETIME, _
lpFileTime As FILETIME) As Long

Private Declare Function CreateFile Lib "kernel32" _
Alias "CreateFileA" (ByVal lpFileName As _
String, ByVal dwDesiredAccess As Long, ByVal _
dwShareMode As Long, lpSecurityAttributes As _
Any, ByVal dwCreationDisposition As Long, _
ByVal dwFlagsAndAttributes As Long, _
ByVal hTemplateFile As Long) As Long

Private Declare Function SetFileTime Lib "kernel32" _
(ByVal hFile As Long, lpCreationTime As Any, _
lpLastAccessTime As Any, lpLastWriteTime As _
Any) As Long

Private Declare Function CloseHandle Lib "kernel32" _
(ByVal hObject As Long) As Long

Private Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Private Type SYSTEMTIME
wYear As Integer
wMonth As Integer
wDayOfWeek As Integer
wDay As Integer
wHour As Integer
wMinute As Integer
wSecond As Integer
wMilliseconds As Integer

End Type

Private Const GENERIC_WRITE As Long = &H40000000
Private Const FILE_SHARE_READ As Long = &H1
Private Const FILE_SHARE_WRITE As Long = &H2
Private Const OPEN_EXISTING As Long = 3

Public Function FileDateTime(ByVal FileName As String, _
Optional ByVal TimeStamp As Variant) As Date

' Raises an error if one occurs just like FileDateTime

Dim x As Long
Dim Handle As Long
Dim System_Time As SYSTEMTIME
Dim File_Time As FILETIME
Dim Local_Time As FILETIME

If IsMissing(TimeStamp) Then
'It's missing so they must want to GET the timestamp
'This acts EXACTLY like the original built-in function
FileDateTime = VBA.FileDateTime(FileName)

ElseIf VarType(TimeStamp) <> vbDate Then
'You must pass in a date to be valid
Err.Raise 450

Else
System_Time.wYear = Year(TimeStamp)

System_Time.wMonth = Month(TimeStamp)
System_Time.wDay = Day(TimeStamp)
System_Time.wDayOfWeek = _

Weekday(TimeStamp) - 1
System_Time.wHour = Hour(TimeStamp)
System_Time.wMinute = Minute(TimeStamp)
System_Time.wSecond = Second(TimeStamp)
System_Time.wMilliseconds = 0

'Convert the system time to a file time
x = SystemTimeToFileTime(System_Time, Local_Time)

'Convert local file time to file time based on UTC
x = LocalFileTimeToFileTime(Local_Time, File_Time)

'Open the file so we can get a file handle to
'the file
Handle = CreateFile(FileName, GENERIC_WRITE, _

FILE_SHARE_READ Or FILE_SHARE_WRITE, _
ByVal 0&, OPEN_EXISTING, 0, 0)

If Handle = 0 Then
Err.Raise 53, "FileDateTime", _

"Can't open the file"
Else

'Now change the file time and date stamp
x = SetFileTime(Handle, ByVal 0&, _

ByVal 0&, File_Time)
If x = 0 Then

'Error occured
Err.Raise 1, "FileDateTime", _

"Unable to set file timestamp"
End If
Call CloseHandle(Handle)
'Return newly set date/time
FileDateTime = VBA.FileDateTime(FileName)

End If
End If

End Function
—Darin Higgins, Fort Worth, Texas

VB4/32, VB5, VB6, SQL Server 6.5 and up, Oracle 8i and up
Level: Beginning

Compare Oracle and SQL Server Dates
Oracle and SQL Server databases use different date/time resolu-
tions, which poses a problem when you compare times from the two
databases: The times will rarely be equal. Solve this problem by
allowing for a margin of error. Treat the dates and times as floating-
point numbers and remember that each day is equal to the whole
number 1, and there are 86,400 seconds in a day. This function
matches times within five seconds (default) of one another:

Public Function MatchTime(adoFldOracle As ADODB.Field, _
adoFldSQLServer As ADODB.Field, _
Optional ByVal Tolerance As Long = 5) As Boolean

Dim dtOracle As Date
Dim dtSQLServer As Date
Dim dblTolerance As Double
Const OneSecond As Double = 1 / 86400

dblTolerance = OneSecond * Tolerance
dtOracle = adoFldOracle.Value
dtSQLServer = adoFldSQLServer.Value
If ((dtOracle > (dtSQLServer + dblTolerance)) Or _

(dtOracle < (dtSQLServer - dblTolerance))) Then
MatchTime = False

Else
MatchTime = True

End If
End Function

—Andy Clark, Richmond, Va.

SEPTEMBER 2001 Supplement to Visual Studio Magazine 29

 For even more tricks and tips go to
 www.vbpj.com or www.vcdj.com

✰✰✰✰✰ Five Star Tip
VB3, VB4, VB5, VB6
Level: Beginning

Manage Errors With Sparse Line Numbering
You might have used line numbering to track error locations, but
this technique can be a pain (and ugly) to use for every line. Sparse
line numbers help you locate code sections generating errors
through the intrinsic Erl (error line) property.

Erl captures the most recent line number so you can pinpoint
error locations with whichever precision you desire. This can help
you determine what to do in the error handler (download this code).
For example, do you need to roll back the database transaction?

—Bob Hiltner, Seattle

VB3, VB4, VB5, VB6
Level: Intermediate

Replace All Occurrences of One String
With Another String
All programmers—especially database programmers—require a
function that replaces all occurrences of one substring with an-
other string. For example, they need to replace the single quotes
in strings passed to an Oracle database with two single quotes.

Using recursion in this algorithm limits its usefulness slightly
below that of VB6’s native Replace function, as the time required
increases greatly in relation to the length of the searched string:

Public Function strReplace(ByVal strString As _
String, ByVal strToBeReplaced As String, ByVal _
strReplacement As String, Optional ByVal _
intStartPosition As Integer = 1) As String
Dim strNewString As String
Dim intPosition As Integer

On Error GoTo ErrorHandler

' intStartPosition will be one initially
intPosition = InStr(intStartPosition, _

strString, strToBeReplaced)

If intPosition = 0 Then
' Nothing more to do so return final string
strReplace = strString

Else
strNewString = Left$(strString, intPosition _

- 1) & strReplacement & Mid$(strString, _
intPosition + Len(strToBeReplaced))

' Recursively call strReplace until there are
' no more occurrences of the string to be
' replaced in the string passed in. We now only want
' to process the remaining unprocessed part of the
' string so we pass a start position.
strReplace = strReplace(strNewString, _

strToBeReplaced, strReplacement, _
intPosition + Len(strReplacement))

End If
Exit Function

ErrorHandler:
' Place error handler code here

End Function

—Patrick Tighe, Eastwall, Dublin, Ireland

VB6
Level: Advanced

Serialize Data Using a PropertyBag
You can serialize your data quickly by placing it into a PropertyBag
object, then reading the PropertyBag’s Contents property. This
property is really a Byte array that is a serial representation of the
data in your PropertyBag object. You can use this byte array for
many purposes, including an efficient means of data transmission
over DCOM:

Private Function PackData() As String
Dim pbTemp As PropertyBag

'Create a new PropertyBag object
Set pbTemp = New PropertyBag
With pbTemp

'Add your data to the PB giving each item a
'unique string key
Call .WriteProperty("FirstName", "John")
Call .WriteProperty("MiddleInitial", "J")
Call .WriteProperty("LastName", "Doe")

'Place the serialized data into a string
'variable.
Let PackData = .Contents

End With

Set pbTemp = Nothing
End Function

To retrieve the serialized data, simply create a new PropertyBag
object and set the serialized string to its Contents property.
Convert the string into a byte array before assigning it to the
Contents property:

Private Sub UnPackData(sData As String)
Dim pbTemp As PropertyBag
Dim arData() As Byte

'Convert the string representation of the data to
'a Byte array
Let arData() = sData

'Create a new PropertyBag object
Set pbTemp = New PropertyBag
With pbTemp

'Load the PropertyBag with data
Let .Contents = arData()

'Retrieve your data using the unique key
Let m_sFirstName = .ReadProperty("FirstName")
Let m_sMiddleInitial = _

.ReadProperty("MiddleInitial")
Let m_sLastName = .ReadProperty("LastName")

End With

Set pbTemp = Nothing
End Sub

—Mike Kurtz, McKees Rocks, Pa.

VS.NET
Level: Beginning

Clear a Picture Property at Design Time
To clear the picture property of a control at design time, right-click
on the icon next to the entry in the Properties window and select
Reset from the popup menu.

—Bill McCarthy, Barongarook, Victoria, Australia

