
84 SEPTEMBER 1997 Visual Basic Programm

I N T E R M E D I A T E

Q & A

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. Karl coauthored
Visual Basic 4 How-To from Waite Group
Press and contributes to various journals.
Online, he’s a Microsoft Developer MVP
and a section leader for both VBPJ online
forums. Contact Karl at karl@rtc.wa.gov.

This is your forum for addressing the
intricacies of Visual Basic. Send your ques-
tions, clever tips, and techniques. Visual
Basic Programmer’s Journal will pay $25
for any submission, tip, or question we
print. If your submission includes code,
please send it electronically. Please include
your mailing address with your submission.
Mail submissions to Q&A Columnists, c/o
Fawcette Technical Publications, 209
Hamilton Avenue, Palo Alto, CA, USA, 94301-
2500. CompuServe: 74774,305. Internet:
vbpjedit@fawcette.com.

b y K a r l E . P e t e r s o n

Let Users Automate
File Pasting

Click & Retrieve
Source

CODE!
PUT THE FILE WHERE YOU WANT
I wrote a program that loads files, one at a time, into the Windows clipboard.
The program loads the first file, and when the user presses the Load Next

button, the next file in the series is loaded onto the clipboard. It’s up to the user to paste
the contents of the clipboard into the appropriate place in another application.

I’d like to add an “Automate” option to let the user configure the program and press
the Automate button. The program would paste the first file into the other application,
load the next file, wait a predetermined period of time, and then paste the next file,
repeating the process until all the files are transferred.

How do I tell my program which application it should paste into which window?
When switching focus to the other application, would the cursor stay in the appropri-
ate place so the data is sent to the right place? How do I force the paste? If my program
is running the automation, would it know when to load the next file?
—Richard Hendricks, Tewksbury, Massachusetts

A So many questions! Let’s look at the first one and see if the answer resolves
the rest. I would turn it around and ask, “How can my user tell my program
where to paste the text?” You allow the user to point at the destination window.

There really is no other way short of telepathy, is there? This solution is the simplest
method, but as easy as it sounds, it raises some tricky issues.

The SetCapture API instructs Windows to direct all mouse input to the designated
window. There’s just one catch: under Win32, if the user moves the mouse cursor over
a window created in another process, mouse input only continues as long as the user
holds down the mouse button. To make this workable, you can have your user drag a
drop-target to the desired window.

I’ve implemented a little demo of this method that sets the MousePointer to a custom
cursor in a picture box’s MouseDown event. To re-create it, start a new project and put
a small, icon-sized picture box on Form1. Assign a selection-type icon to the DragIcon
property of this picture box (see Figure 1), and start adding code to the form (see Listing
1). A form-level Boolean variable is toggled to indicate that the user is currently selecting
a window. Pass the picture box’s hWnd property to SetCapture to redirect all mouse
movements to the picture box’s MouseMove event.
er’s Journal
In the MouseMove event,
use another form-level vari-
able to track which window
the cursor is currently over
whenever the user moves
the mouse. You can identify
the window fairly easily us-
ing two API calls: GetCur-
sorPos returns the cursor
location in screen coordi-
nates, and WindowFrom-
Point returns the hWnd of
the underlying window. Fi-
nally, use the MouseUp
event to clean up and signal
that you’re ready to move
on with the task at hand. All
that’s required is releasing
Drag an Icon to Select Window. This sample
applet lets a user drag the icon in the picture box

around the screen, capturing the window handle as each
window passes under the icon.

FIGURE 1
http://www.windx.comhttp://www.windx.com

Q & A

I N T E R M E D I A T E
your hold on the mouse with a call to
ReleaseCapture, and restoring the
MousePointer to its normal state.

Now that you have the handle of the
window your user wants to paste the text
into, the other details start to fall into
place. Passing the stored window handle
to SetForegroundWindow transfers focus
to the selected window. Now use SendKeys
to paste the contents of the clipboard into
this window:

Private Sub Command1_Click()
'
' Attempt to paste something into
' selected window.
'

http://www.windx.com

Allow Users to Locate Target W
as pasting information from the c

for that platform.

LISTING 1
If m_hWnd Then
Clipboard.Clear
Clipboard.SetText _

"Hello from VB5!", vbCFText
Call SetForegroundWindow(m_hWnd)
SendKeys "^v", True

End If
End Sub

Once this task is automated, you can loop
through all the file pastes required as soon
as the user indicates where to paste the text.

DETECT SCROLLBAR USE
Using VB3, I need to recognize
when the scrollbar of a list box

has been used—that is, when the TopIndex
Visual Basic

indow. This code enables users to point to
lipboard. Apply the same technique in 16-bit
value changes. However, there are no
events for this user action. Using the
scrollbar doesn’t generate a MouseDown
or any other event. How can I detect when
the scrollbar has been used and take ac-
tion when the TopIndex value changes?
Keith Campbell, received by e-mail

A Yet another example of why
subclassing controls have always
 been popular with VB program-

mers! You can use two methods to arrive
at a solution to this problem. The first is
“pure VB,” and I think you’ll see why I like
the second as soon as you hear the first.

One approach is to set a short-duration
Timer control, and continuously poll the
Option Explicit
'
' Win32 API Declarations
'
Private Declare Function SetCapture Lib "user32" _
(ByVal hwnd As Long) As Long

Private Declare Function ReleaseCapture Lib "user32" _
() As Long

Private Declare Function GetCursorPos Lib "user32" _
(lpPoint As POINTAPI) As Long

Private Declare Function WindowFromPointXY Lib _
"user32" Alias "WindowFromPoint" (ByVal xPoint As _
Long, ByVal yPoint As Long) As Long

Private Declare Function SetForegroundWindow Lib _
"user32" (ByVal hwnd As Long) As Long

'
' Win32 API Structures
'
Private Type POINTAPI
x As Long
y As Long

End Type
'
' Form-level member variables
'
Private m_hWnd As Long
Private m_Picking As Boolean

Private Sub Form_Load()
'
' Assign dragging pointer
'
Picture1.Picture = Picture1.DragIcon
Me.MouseIcon = Picture1.DragIcon

End Sub

Private Sub Picture1_MouseDown(Button As Integer, _
Shift As Integer, x As Single, y As Single)
'
' Clear picture and turn on dragging mousepointer.
'
Me.MousePointer = vbCustom
Set Picture1.Picture = Nothing
'
' Remember that we're currently picking a window.
'
m_Picking = True
'

' Capture all mousemovements from this point until
' the user releases the mouse button.
'
Call SetCapture(Picture1.hwnd)

End Sub

Private Sub Picture1_MouseMove(Button As Integer, _
Shift As Integer, x As Single, y As Single)
Static pt As POINTAPI
Static hwnd As Long
'
' If user is picking a window, check window is under
' the cursor whenever it moves. If it's a different
' window than previously, update the display to that
' effect.
'
If m_Picking Then

Call GetCursorPos(pt)
hwnd = WindowFromPointXY(pt.x, pt.y)
If hwnd <> m_hWnd Then

m_hWnd = hwnd
Me.Caption = Hex(m_hWnd)

End If
End If

End Sub

Private Sub Picture1_MouseUp(Button As Integer, _
Shift As Integer, x As Single, y As Single)
'
' We're done picking now
'
m_Picking = False
'
' Restore dragging icon to picture box,
' and return mousepointer to normal.
'
Picture1.Picture = Picture1.DragIcon
Me.MousePointer = vbDefault
'
' Don't need to be notified anymore.
'
Call ReleaseCapture
'
' The chosen window is already stored in m_hWnd!
'
MsgBox "You picked hWnd: " & Hex(m_hWnd)

End Sub
Programmer’s Journal SEPTEMBER 1997 85

 a destination window for operations, such
VB apps by modifying the API declarations

I N T E R M E D I A T E

Q & A
TopIndex property of your list box. Pretty ugly, huh? The other
approach is to hook the WM_VSCROLL message using a subclassing
control. All such controls work, but I have historically recom-
mended using Mabry’s MsgHook, because it is freeware, works well,
and offers a few unique capabilities. A net.search should turn up
MsgHook.vbx in quite a few locations. Subscribers to the Premier
Level of The Development Exchange can download a combination
package that includes a 16-bit VBX and both 16- and 32-bit OCXs (see
the Code Online box at the end of this column for details).

Although all subclassing controls use slightly different syn-
tax, they tend to follow the same patterns. You first need to tell
the control which window it’s subclassing, and which messages
you’re interested in. In my sample program, I used this code in
the Form_Load event:

MsgHook1.HwndHook = List1.hWnd
MsgHook1.Message(WM_VSCROLL) = True

Now just sit back and wait for the subclassing control to
notify you whenever it receives messages you want. MsgHook
fires a Message event whenever this happens:

Sub MsgHook1_Message (msg As Integer, _
wparam As Integer, lparam As Long, _
result As Long)
'
' We're only hooking one message
' this time, but others could be
86 SEPTEMBER 1997 Visual Basic Programmer’s Journal
' handled here as well.
'
Select Case msg

Case WM_VSCROLL
'
' Pass message along to VB for
' default processing, then
' update display to show that
' scrolling was detected.
'
result = InvokeWindowProc_

(MsgHook1.HwndHook, msg, wparam, lparam)
Me.Caption = "TopIndex: " & List1.TopIndex

End Select
End Sub

Windows sends a message to the parent control, in this case
the list box, whenever an attached scrollbar is used. With these
few lines of code, you’ve intercepted this message. In fact, the
scrolling hasn’t even occurred yet. Because of this, before react-
ing to the message, you need to let the default processing occur.
MsgHook accomplishes this by calling the InvokeWindowProc
function (implemented as a method in the OCX versions). In the
Declarations section of your form, declare the InvokeWindowProc
function and WM_VSCROLL constants like this:
'
' Routine within MsgHook that calls
' default window procedure
'
Declare Function InvokeWindowProc Lib _

"MsgHook.vbx" (ByVal hWnd As _
Integer, ByVal msg As Integer, _
ByVal wparam As Integer, ByVal _
lparam As Long) As Long

'
' Message hooked to detect scrolling
'
Const WM_VSCROLL = &H115

Subclassing is a technique offering capabilities that prob-
ably won’t rate high enough with developers to be incorpo-
rated as VB events. However, when you need them, you really
need them.
http://www.windx.com

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the list-
ings and associated files essential to the articles are available for free
to Registered members of DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on CompuServe. DevX
Premier Club members ($20 for six months) can get each article’s
listings in a separate file, as well as additional code and utilities for
selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

Let Users Automate File Pasting

Locator+ Codes
Listings ZIP file plus sample apps demonstrating the Window-picker
and catching WM_VSCROLL messages (free Registered Level): VBPJ0997

 Listings ZIP file plus sample apps demonstrating the Window-picker
and catching WM_VSCROLL messages, as well as freeware 16-bit VBX
and 16- and 32-bit OCX MsgHook controls from Mabry Software
(subscriber Premier Level): QA0997P

	Code!

