
88 AUGUST 1997 Visual Basic Programmer’s

I N T E R M E D I A T E

Q & A

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant specializ-
ing in ActiveX controls and contributes to
various journals. Karl coauthored Visual
Basic 4 How-To, from Waite Group Press.
Online, he’s a Microsoft Developer MVP and
a section leader in both of VBPJ’s online
forums. Contact Karl at karl@rtc.wa.gov.

This is your forum for addressing the
intricacies of Visual Basic. Send your ques-
tions, clever tips, and techniques. Visual
Basic Programmer’s Journal will pay $25
for any submission, tip, or question we
print. If your submission includes code,
please send it electronically. Please include
your mailing address with your submission.
Mail submissions to Q&A Columnists, c/o
Fawcette Technical Publications, 209
Hamilton Avenue, Palo Alto, CA, USA, 94301-
2500. CompuServe: 74774,305. Internet:
vbpjedit@fawcette.com.

b y K a r l E . P e t e r s o n

The Keys to Your Controls

Click & Retrieve
Source

CODE!
GENERIC ROUTINE ACTS ON CONTROL ARRAY
Is there any way to use a variable for a control name? One field in my
recordset contains the names of menu items that need to be enabled or

disabled at run time. I use a Select Case or If-Then-Else block to test all the possibilities:

set db as OpenDataBase("MyDB")
set rs as db.OpenRecordSet("MenuEnables")
Do While Not rs.Eof

' rs!mnuItem holds the name of Object
' in a menu list
If rs!mnuItem = "mnuFileSave" Then

mnuFileSave.Enabled = True
ElseIf rs!mnuItem = "mnuFileExit" Then

mnuFileExit.Enabled = True
End If
rs.MoveNext

Loop

However, there must be a better way.
—David Codding, Bowling Green, Ohio

A The solution you’ve found was the best available in VB3, but the situation has
much improved with later releases. VB4 introduced keyed collections, where
you can access references to each item in a collection with a unique index

key. Although VB3 offered the Controls collection, VB4 keyed this collection on the
individual control names. You can put this feature to excellent use by rewriting your
code along these lines:

Me.Controls(rs!mnuItem).Enabled = True

Of course, this technique works with any string variable:

Me.Controls("mnuFileSave").Enabled = True

You should be aware of one peculiarity of the Controls collection. Unlike other
standard collections, the Controls collection returns two distinct types of objects. If
the key (control name) refers to a control array, querying this Item results in an array
reference. Using this trick, you can write a single generic routine that performs the
same action on all elements of a control array. For example, use this routine to clear
the contents of all text boxes in an array:

Sub ClearTextArray(Which As String, Frm As Form)
Dim oArray As Object
Dim ctl As Control
On Error Resume Next
Set oArray = Frm.Controls(Which)
For Each ctl in oArray

ctl.Text = ""
Next ctl

End Sub

Clearing a form full of text boxes is simple:

Call ClearTextArray("Text1", Me)
 Journal http://www.windx.com

Q & A

I N T E R M E D I A T E
Special thanks to Craig Clearman, a Microsoft Developer
MVP, for bringing this capability to my attention.

DISPLAY PROPER-CASE FILE AND PATH NAMES
Using VB4/32 Professional Edition with Windows 95, I
created a file picker form with the native FileListBox,

DirListBox, DriveListBox, and TextBox controls. It works fairly
well, except the file names and paths are all displayed and
returned in lower case. I’d like to have the information displayed
in the actual case. If I can’t get it displayed in the proper case,
how can I convert the lowercase name with proper-case?
—Richard Hendricks, Tweksbury, Massachusetts

A There’s no way to alter the displays you see with the
VB4 intrinsic controls. You might want to consider
upgrading to VB5, which partially cured this annoy-

ance (see Figure 1). You can use a simple API call, however, to
correct path and file names with improper cases. In fact, you
have a choice of two: either FindFirstFile or SHGetFileInfo. The
safest pick is FindFirstFile, because NT 3.51 doesn’t support
SHGetFileInfo—it’s one of the new shell calls. See just how
simple it can be:

Function ProperCaseFile(FileIn As String) As String
Dim hSearch As Long
Dim wfd As WIN32_FIND_DATA
hSearch = FindFirstFile (FileIn, wfd)
If hSearch <> INVALID_HANDLE_VALUE Then

Call FindClose(hSearch)
ProperCaseFile = TrimNull (wfd.cFileName)

End If
End Function

The ProperCaseFile function accepts a filespec, whose path
may be a relative reference, and returns only the proper-case file
name (see Listing 1, which also includes the TrimNull function).
A lot of other, interesting data is also returned in the
WIN32_FIND_DATA structure. With this one call, you can retrieve
the file’s attributes, size, and the short 8.3 file name, as well as its
creation, last access, and last write time stamps.

You usually use FindFirstFile when you need to find all files
http://www.windx.com
that match a wildcard filespec. FindFirstFile opens a search
handle and, as the name implies, returns information about the
first file that matches. Once you establish this search handle,
your program passes it to FindNextFile until all matching files
are found. It’s important, whether you’re searching for one or
many files, to always call FindClose on the search handle when
you’re done. Calling FindClose effectively cleans up some scratch
buffers the system has allocated to track your search. Failing to
call FindClose could cause a slow resource leak.

Proper-casing paths is a bit trickier. No single function will do
it all with one call. However, you can use FindFirstFile to recur-
sively work your way through each directory on a path, and
solve the problem that way instead (see Listing 1).

If you’ve never worked with recursive functions, it will defi-
nitely help to step through this one a few times. ProperCasePath
first whacks from the tail one directory at a time, calling itself
and passing the truncated path, until it works its way back to the
drive letter. At that point you can call FindFirstFile on each
successive directory. As the function returns to itself, the re-
sults are appended back on, thus rebuilding the path.

To obtain the complete CFileInfo class, you can download it
from the Registered Level of The Development Exchange (see the
Code Online box at the end of this column for details). Addition-
ally, subscribers to the Premier Level can download a companion
class CFileVersionInfo and a demo applet that uses both classes
to emulate the system Property Pages dialog used by NT4.

SOLVE FILE-LOADING PROBLEM
It seems that more and more of the project files sent
to me by coworkers and collaborators refuse to load

into the VB5 IDE. What’s more, the forms lose controls—that is, a
ListView control might be replaced with a PictureBox control. This
is extremely irritating, as I must manually re-create the lost controls
and reset all their design-time properties. What’s going on?
—Zach Thomas, received by e-mail

A The answer is simple yet frustrating. Microsoft, yet
again, has updated and made incompatible the
Comctl32.ocx file that contains your missing ListViews.

This time, the update is in fact “binary compatible,” so older
(but not too old!) programs should still run with the newer OCX.
Problems do arise when developers (or machines) share source
code with different versions. To immediately load the source,
you can patch the project files. Open the VBP and FRM files in a
text editor, and change the version number from 1.2 to 1.1. For
example, change this line:

Object = "{6B7E6392-850A-101B-AFC0" & _
"-4210102A8DA7}#1.2#0"; "comctl32.ocx"

to this:

Object = "{6B7E6392-850A-101B-AFC0" & _
"-4210102A8DA7}#1.1#0"; "comctl32.ocx"

YOU USUALLY USE FINDFIRSTFILE WHEN YOU

 NEED TO FIND ALL FILES

 THAT MATCH A WILDCARD FILESPEC.
FIGURE 1 Two Classes Replicate Dialog. This VB5 demo applet
uses CFileInfo and CFileVersionInfo classes to replicate

the Properties dialog used by NT4 and Windows 95. A single API
call to FindFirstFile obtains most of the information shown on the
General tab.
Visual Basic Programmer’s Journal AUGUST 1997 89

I N T E R M E D I A T E

Q & A

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the list-
ings and associated files essential to the articles are available for free
to Registered members of DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on CompuServe. DevX
Premier Club members ($20 for six months) can get each article’s
listings in a separate file, as well as additional code and utilities for
selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

The Keys to Your Controls
Locator+ Codes
Listings ZIP file plus the CFileInfo class (free Registered Level): VBPJ0897

␣ Listings for this article, plus a companion class CFileVersionInfo
and a demo applet that uses both classes to emulate the system Property
Pages dialog used by NT4 (subscriber Premier Level): QA0897P

Display Proper-Case Path Names. Users notice the little things. If your application displays path names, perhaps in an
Options dialog that points to a data source, it’s a nice touch to ensure that you display them using the proper case. The

ProperCasePath function recursively works its way through each directory in a path string.

LISTING 1
This allows you to use projects designed with the newer
control on systems with the older control. The long-term
solution is to download and install the latest build. It’s currently
shipping with a number of products, which explains why you’re
seeing references to it arrive more often. At deadline, version
5.00.3828 is the latest, and is available from Microsoft Knowl-
edge Base article Q167121 (http://www.microsoft.com/kb/
articles/q167/1/21.htm).

Microsoft also shipped two other versions of Comctl32.ocx,
which are binary incompatible with those that shipped most
recently. If you have loaded either Beta-1 of the VB5 Control
Creation Edition (5.00.3422) or the Microsoft Office 97 Devel-
oper Edition (5.00.3601), you should confirm that these older
versions are no longer on your machine. Version 5.00.3714
shipped with the retail release of VB5. For more information, see
KB article Q167123 (http://www.microsoft.com/kb/articles/q167/
1/23.htm).␣
' Win32 API Declarations
Private Declare Function FindFirstFile _
Lib "kernel32" Alias "FindFirstFileA" _
(ByVal lpFileName As String, lpFindFileData _
As WIN32_FIND_DATA) As Long

Private Declare Function FindClose Lib "kernel32" _
(ByVal hFindFile As Long) As Long

' Win32 API Constants
Private Const MAX_PATH = 260
Private Const INVALID_HANDLE_VALUE = -1
Private Const FILE_ATTRIBUTE_DIRECTORY = &H10
' Win32 API Structures
Private Type WIN32_FIND_DATA
dwFileAttributes As Long
ftCreationTime As FILETIME
ftLastAccessTime As FILETIME
ftLastWriteTime As FILETIME
nFileSizeHigh As Long
nFileSizeLow As Long
dwReserved0 As Long
dwReserved1 As Long
cFileName As String * MAX_PATH
cAlternate As String * 14

End Type
Private Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Private Function ProperCasePath(ByVal PathIn As String) _
As String
Dim hSearch As Long
Dim wfd As WIN32_FIND_DATA
Dim PathOut As String
Dim i As Long
'
' Trim trailing backslash, unless root dir.
'
If Right(PathIn, 1) = "\" Then

If Right(PathIn, 2) <> ":\" Then
PathIn = Left(PathIn, Len(PathIn) - 1)

Else
ProperCasePath = UCase(PathIn)
Exit Function

End If
End If
'
' Insure that path portion of string uses the
' same case as the real pathname.
'
If InStr(PathIn, "\") Then
90 AUGUST 1997 Visual Basic Programmer’s Journal
For i = Len(PathIn) To 1 Step -1
If Mid(PathIn, i, 1) = "\" Then

'
' Found end of previous directory.
' Recurse back up into path.
'
PathOut = ProperCasePath(Left(PathIn, i - _

1)) & "\"
'
' Use FFF to proper-case current directory.
'
hSearch = FindFirstFile(PathIn, wfd)
If hSearch <> INVALID_HANDLE_VALUE Then

Call FindClose(hSearch)
If wfd.dwFileAttributes And _

FILE_ATTRIBUTE_DIRECTORY Then
ProperCasePath = PathOut & _

TrimNull(wfd.cFileName)
End If

End If
'
' Bail out of loop.
'
Exit For

End If
Next i

Else
'
' Just a drive letter and colon,
' upper-case and return.
'
ProperCasePath = UCase(PathIn)

End If
End Function

Private Function TrimNull(ByVal StrIn As String) _
As String
Dim nul As Long
'
' Truncate input string at first null.
' If no nulls, perform ordinary Trim.
'
nul = InStr(StrIn, vbNullChar)
Select Case nul

Case Is > 1
TrimNull = Left(StrIn, nul - 1)

Case 1
TrimNull = ""

Case 0
TrimNull = Trim(StrIn)

End Select
End Function
http://www.windx.com

	Code!

