
PROGRAMMING
TECHNIQUES

Click & Retrieve
Source

CODE!
Add your application to the
taskbar tray.

by Karl E. Peterson

Stay in the Tray
Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and a member of the VBPJ Technical Review
Board. Based in Vancouver, Washington, he’s
also an independent programming consultant and
a writer. Karl coauthored Visual Basic 4 How-To,
from Waite Group Press. Online, he’s a section
leader in the VBPJ Forum 32-Bit Bucket and a
Microsoft MVP in the MSBASIC Forum. Contact
Karl in either of the CompuServe forums at
72302,3707 or on the Internet at karl@rtc.wa.gov.

http://www.windx.com
of this API call, and a class module that provides easy access to
all the information GetVersionEx provides.

This check is typically performed in Sub Main, so you can bail out
before any forms load if you find yourself in an older operating
system. If a suitable OS is found, you can then load your principal
form after performing any other required initialization in Sub Main.
This form requires three module-level declarations—two constants
that will be used to identify your application and send messages to
it, and the structure that provides the OS with required data about
your tray app (see Listing 1 for the structure and API declarations):

Private Const cbNotify& = &H4000
Private Const uID& = 61860
Private nid As NOTIFYICONDATA

The constant cbNotify is a user-defined message number that
the OS will send to your app to notify it of mouse events. You can
set this constant to any value you choose, but as a good rule of
thumb, ensure that it’s higher than WM_USER so that it doesn’t
conflict with other system messages. Likewise, the uID is also a
user-defined constant that you can set to any value. In cases where
your application loads more than one icon into the tray, uID
identifies which icon system messages are intended for. By declar-
ing a module-level instance of the NOTIFYICONDATA structure,
you can use it in multiple situations—at the least for adding the icon
at initialization and removing it at termination.

Insert your application into the tray during the Form_Load
event. To do so, you must fill out all members of the
NOTIFYICONDATA structure and call the ShellNotifyIcon API. The
cbSize element designates the structure’s size and is required (as
is typical with many API structures). The uFlags element instructs
the OS which elements of this structure should be used and which
to ignore. Because this is the initial call to ShellNotifyIcon, all
available flags should be used. The hIcon element provides a
handle to the icon used in the tray, and the szTip element contains
a pointer to the tooltip text displayed when the user moves the
mouse over your icon:

nid.cbSize = Len(nid)
nid.hWnd = Msghook.HwndHook
nid.uID = uID
nid.uFlags = NIF_MESSAGE Or NIF_TIP Or NIF_ICON
nid.uCallbackMessage = cbNotify
nid.hIcon = Me.Icon
nid.szTip = Me.Caption & Chr(0)
Call ShellNotifyIcon(NIM_ADD, nid)

The hWnd and uCallbackMessage elements instruct the OS
which window to notify with system messages. If your application
doesn’t allow user interaction, you can safely ignore this step. But,
if you want to be notified when the user clicks on your icon, you
must use a subclassing control to intercept these messages. I’ve
used MsgHook to intercept messages sent to the main form’s
window, specifically filtering for the cbNotify message. This hook,
4.0 ships with the newshell interface. Such applications previously
were restricted to running under Windows 95, and they required
significant architectural changes if the author wanted them to run
in both 32-bit environments. This month, I will present the basic
functions required for a tray application.

Tray applications have two basic requirements. Foremost, of
course, they must actually reside in the tray—modifying your
application to make this happen requires only one API call. Most tray
apps also require the ability to receive mouse messages from the
system as the user clicks on the icon. Beyond this, tray apps vary
little from any other type of application. They generally feature a
form that displays itself when the user double-clicks on the icon, and
they often provide a popup context menu when the user right-clicks
on the icon. Tray apps don’t need such features though; you can also
design an application to just load at startup and remain running,
undisturbed, throughout the Windows session.

It’s wise to test for the operating system version at startup
because your applications will undoubtedly still have to face
workstations running NT 3.51 for a while. To do so, you can call the
GetVersionEx API function and test the value of dwMajorVersion:

Dim os As OSVERSIONINFO
os.dwOSVersionInfoSize = Len(os)
Call GetVersionEx(os)
If os.dwMajorVersion < 4 Then

MsgBox "NT4 or Win95 Required!", _
vbCritical, "Program Ending"

End
End If

See my last Programming Techniques column, “Unicode Strings
You Along” [VBPJ September 1996], for a complete description

isual Basic programmers can more freely develop applica-
tions that embed themselves in the taskbar notification
area (commonly called “the tray”) now that Windows NT
Visual Basic Programmer’s Journal NOVEMBER 1996 155

L
sta ,
bu r
ap

w

15

PROGRAMMING
TECHNIQUES
ISTING 1 Declarations Required for a Tray App. Insert these
API, constant, and structure declarations into your main

rtup module. You may not need to include all the mouse messages
t having them there makes it easy to modify the behavior of you

Public Type NOTIFYICONDATA
cbSize As Long
hwnd As Long
uID As Long
uFlags As Long
uCallbackMessage As Long
hIcon As Long
szTip As String * 64

End Type
Public Const NIM_ADD = &H0
Public Const NIM_MODIFY = &H1
Public Const NIM_DELETE = &H2
Public Const NIF_MESSAGE = &H1
Public Const NIF_ICON = &H2
Public Const NIF_TIP = &H4
Public Declare Function ShellNotifyIcon Lib _
"shell32.dll" Alias "Shell_NotifyIconA" _
(ByVal dwMessage As Long, _
lpData As NOTIFYICONDATA) As Long

Public Const WM_MOUSEMOVE = &H200
Public Const WM_LBUTTONDOWN = &H201
Public Const WM_LBUTTONUP = &H202
Public Const WM_LBUTTONDBLCLK = &H203
Public Const WM_RBUTTONDOWN = &H204
Public Const WM_RBUTTONUP = &H205
Public Const WM_RBUTTONDBLCLK = &H206
Public Const WM_MBUTTONDOWN = &H207
Public Const WM_MBUTTONUP = &H208
Public Const WM_MBUTTONDBLCLK = &H209
p with the least hassle. n

6 NOVEMBER 1996 Visual Basic Programmer’s Journal
LISTING 2 Notification Message Template. Here are some of the
mouse messages a tray app can receive from the system

hen the user clicks on the icon. The two most common messages you
eed to watch for are WM_LBUTTONDBLCLK and WM_RBUTTONUP.

Private Sub Msghook_Message(ByVal msg As Long, _
ByVal wp As Long, ByVal lp As Long, result As Long)
Dim param As String
param = "msg: " & msg & " wp: " _

& wp & " lp: " & lp
If wp = uID Then

Select Case lp
Case WM_MOUSEMOVE
Case WM_LBUTTONDOWN
Case WM_LBUTTONUP
Case WM_LBUTTONDBLCLK

' Show form
Me.Visible = True
AppActivate Me.Caption

Case WM_RBUTTONDOWN
Case WM_RBUTTONUP

' Display context menu
' Highlight default (Open)
Me.PopupMenu mPopup, , , , mPop(0)

Case WM_RBUTTONDBLCLK
Case WM_MBUTTONDOWN
Case WM_MBUTTONUP
Case WM_MBUTTONDBLCLK
Case Else

Debug.Print "Unknown!" & param
End Select

End If
End Sub
in effect, sets up a message-based callback to your form. All you
need to do during Form_Load is ensure that your form has its
Visible property set to False and instruct your subclassing control
to intercept the proper message(s) before calling ShellNotifyIcon.
With MsgHook, use these instructions:

Msghook.HwndHook = Me.hwnd
Msghook.Message(cbNotify) = True

As the user interacts with your icon, the system sends messages
notifying you of what the user is doing. The message number is
always cbNotify, and the wParam is uID; both are the values you
specified in the NOTIFYICONDATA structure. The lParam value
can be any of the various mouse messages. Use a Select Case block
within your subclassing control’s message notification event to
determine how to react to different user actions (see Listing 2).
Commonly, you want to show your main form when the user
double-clicks on the icon, and provide a popup context menu when
the user right-clicks on the icon.

You must observe just a few remaining details in order to assure
a well-behaved app. For a nice touch, use the QueryUnload event
to cancel an unload if the user presses the title bar’s Close button
on your form. Consider hiding your form instead, and offer a menu
option to actually unload the application:

If UnloadMode = vbFormControlMenu Then
' Just hide form if user presses Close button
Me.Visible = False
Cancel = True

End If

Finally, you must remember to remove your icon from the tray
while your application shuts down. This step requires one more
call to ShellNotifyIcon in your Form_Unload event. Pass the same
structure you used to set up the tray icon, but use the NIM_DELETE
message to instruct the system to remove your icon:

Call ShellNotifyIcon(NIM_DELETE, nid)

Your application may want to modify the icon used in the tray
or its tooltip text while it’s running. To do so only requires addi-
tional calls to ShellNotifyIcon using the NIM_MODIFY message. The
application framework available to members of the Premier Club of
The Development Exchange includes the few extra steps required
to provide this functionality. If I may offer one final word of advice,
please carefully consider the appropriateness of placing your
application in the taskbar tray. Users probably will be frustrated by
unnecessary consumption of this precious real estate. For a com-
plete application framework that will give you a great starting point
in developing your own tray application, check out the files avail-
able to members of the DevX Premier Club (for details, see the
Code Online box at the end of this column).

RESOURCE CONSERVATION TIP
Often, you want extra icons for your app. Perhaps you want to
“animate” your app’s icon at run time or store a number of special
mouse pointers. One resource-intensive way to do this would be to
put multiple hidden picture boxes on your form and store an icon
in each. Once an icon is in a picture box though, it essentially
becomes a bitmap. The simple method I use consumes nearly the
fewest possible resources while letting me maintain the unique
characteristics (transparent and inverse pixels) of an icon: the
intrinsic Label control offers the perfect container! I just place an
invisible Label on my form and set the desired icon into its DragIcon
property. I can then assign this property to anything that requires
an icon handle. While using an RES file to hold the icon(s) would be
slightly more resource-efficient, it would also be nowhere near as
http://www.windx.com

easy to implement. This trick works in any version of Visual Basic.

FIND THE TEMP DIRECTORY
Win32 provides a GetTempPath API that returns the path to
where the system stores temporary files. Win16 doesn’t have a
direct counterpart, though it comes close. In Win16, the
GetTempFileName API returns the temp directory as the path
portion of the function return value, provided you supply the
correct disk for the temp file. In order to do that, you must first
call the Win16 GetTempDrive API. This call is a remnant from
Windows 1.0, when it was not uncommon for users to have
Windows on Drive A: and data/swap space on Drive B:.

The good news is that this mess has finally been cleaned up in
Win32. (See Knowledge Base article Q137034 for related informa-
tion.) The better news is that Win32 uses an extremely simple
algorithm, and programmers can easily implement it in VB. Windows
NT and 95 simply search for the environment variable “TMP.” If that
is not found, then “TEMP” is checked. If neither environment variable
is present, the current directory is returned. You can envision the VB
function now, right? For me, it’s far easier to type this routine than
to dig out the appropriate API declaration, set it up, and call it:

Public Function GetTempPath() As String
Dim TempPath As String
' Follow same rules as API.
TempPath = Environ("TMP")
If Len(TempPath) = 0 Then

TempPath = Environ("TEMP")
If Len(TempPath) = 0 Then

PROGRAM
TECHNIQ

http://www.windx.com
 Visual Basic Programmer’s Journal NOVEMBER 1996 157

MING
UES

TempPath = CurDir
End If

End If
GetTempPath = TempPath

End Function

Having the path to the temporary directory allows you to create
your application’s temp files where the user wishes. The simplest
method to do so is to call the GetTempFileName API, passing the path
to the temp directory as the desired location for the new file.

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the list-
ings and associated files essential to the articles are available for free to
Registered members of DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on CompuServe. DevX
Premier Club members ($20 for six months) can get each article’s
listings in a separate file, as well as additional code and utilities for
selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

Stay in the Tray
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ1196

 Listings for this article plus a taskbar tray application framework,
a freeware version of MsgHook, a hyperlink for a taskbar tray implemen-
tation using Call32.DLL and VB3, and various other links (subscriber
Premier Level): PT1196P

	CODE!

