
PROGRAMMING
TECHNIQUES

PROGRAMMING
TECHNIQUES

Click & Retrieve
Source

CODE!
Unicode Strings You Along
a byte array before you can pass them intact from VB.

d
u
u
s
S

-
-

,
.

t

-

,
-

-
-

t

tain a number
-

Bypass automatic conversion of
strings to avoid corruption.

by Karl E. Peterson

VB, VB converts the strings to Unicode. This process not only
increases the overhead of passing strings, but also might cor
rupt strings if the operating system doesn’t map both conver
sions in the same way. In a previous column [Programming
Techniques, “Chef’s Surprise,” VBPJ May 1996], I presented a
function that could detect such corruption. Now I’ll show you
how to bypass these automatic conversions.

Windows NT introduced the Unicode character set to PCs
to overcome ASCII’s (or ANSI’s) limitation of 256 characters. By
doubling the number of bits allotted to each character from
eight to 16, Unicode offers the opportunity to store 65,536
unique characters within any given font or code page—enough
for every character from every language ever used on Earth
legend has it. This would indeed seem to be a good thing
Unfortunately, Unicode presents unique challenges to the VB
programmer, as VB4 seems designed specifically to preven
you from taking advantage of it. I will discuss these problems
a little later.

Nearly all Win32 API functions that accept strings as param
eters (even if the strings are passed within a user-defined type)
have two versions. Typically known as the “A” and “W” versions
for ANSI and Wide (Unicode), these two variations are differen
tiated by one of these two letters appended to the function
name. The “A” functions expect to receive ANSI strings, and the
“W” functions expect to receive Unicode strings—to send the
wrong type invites almost certain failure. To preserve consis
tency with existing code, many developers alias the “A” func
tions to their Win16 names:

Private Declare Function SendMessage _

B4/32 maintains all strings internally as Unicode, bu
always converts them to ANSI before passing them to
external routines. When ANSI strings are returned to
http://www.windx.com

Karl E. Peterson is a GIS Analyst with a regional transportation
planning agency and a member of the Visual Basic Programmer’s
Journal Technical Review Board. Based
in Vancouver, Washington, he’s also an
independent programming consultant and
a writer. Karl coauthored Visual Basic 4
How-To, from Waite Group Press. Online,
he’s a section leader in the VBPJ Forum 32-
Bit Bucket section and a Microsoft Developer
Support MVP. Contact Karl on CompuServe
at 72302,3707.

Lib "user32" Alias "SendMessageA" _
(ByVal hwnd As Long, ByVal wMsg As Long, ByVal _
wParam As Long, lParam As Any) As Long

Normally, if you pass a string in lParam, VB4 will convert it to
ANSI and the SendMessage function will work just fine (as long
as the string is preceded with the ByVal keyword in the call). But
what if you want to pass a Unicode string in lParam? You will
need an additional declaration to specifically reference the “W”
version of SendMessage:

Private Declare Function SendMessageB _
Lib "user32" Alias "SendMessageW" _
(ByVal hwnd As Long, ByVal wMsg _
As Long, ByVal wParam As Long, _
lParam As Any) As Long

The only differences between these two declarations are the
suffix on the internal name of the function and the suffix I’ve
added to the function name as VB will know it. I chose to use “B”
rather than “W” because you must convert Unicode strings into
Not all the
fonts that ship
with Windows
NT are the
standard ANSI
fonts we’re all
familiar with;
instead, NT
ships with an
assortment of
Unicode fonts.
While these
fonts are not
rich in charac-
ters, they con-
.

:

of extended character sets that you can browse using NT’s Charac
ter Map applet. If you select these extended characters into the
clipboard while using Character Map, you can paste them into
Unicode-enabled controls, among which are the NT-provided
standard controls such as edit boxes. For example, the Notepad
applet, which ships with NT, readily accepts Unicode characters
when pasted from the clipboard or read from a file (see Figure 1)

This provides a handy method to test what’s required to pass
Unicode strings from VB. Use the ChrW function to build strings
containing these extended characters, and convert them by
assigning the string to a dynamic byte array. Representing
the four card suits (and a terminating null), these extended
character codes were determined using the Character Map applet

Dim msg As String
Dim msgB() As Byte
msg = ChrW(&H2660) & ChrW(&H2663) _
Visual Ba
Unicode Support In Notepad. NT’s
native controls support Unicode by

efault. Even though Notepad may appear to be
sing a symbol font such as WingDings, it’s actually
sing Times New Roman. The Visual Basic program
ent these characters to Notepad with
endMessageW.

FIGURE 1
sic Programmer’s Journal SEPTEMBER 1996 151

PROGRAMMING
TECHNIQUES

lack of support for Unicode only compounds these challenges.

into the control.
You can’t paste

-

& ChrW(&H2665) & ChrW(&H2666) & ChrW(0)
msgB = msg

Though not all Unicode fonts may have characters in these
positions, if they do, they should always be these specific
characters. That’s really the beauty of Unicode.

If you pass the string as is, using the “A” version of
SendMessage, VB converts it to ANSI before passing it to
SendMessage. Because the extended Unicode character codes
are outside the range of the ANSI character set, the resultant
string consists of four question marks. To pass the string
without the default corruption occurring, you must use the “W”
version of SendMessage. The next example first spawns an
instance of Notepad, then determines the handles for both the
main window and the text box within it (which conveniently
happens to be the first child of the main window, allowing use of
the GetWindow API). A pointer to the byte array is sent to
Notepad’s text box using the “W” version of SendMessage by
passing a reference to the first element of the byte array. If you
run this example in NT and see four boxes rather than the four
card suits in Notepad, you need to change the font Notepad is
using to one that supports Unicode, such as Times New Roman
(see Figure 1):

Dim hWndNotepad As Long
Dim hWndNotepadText As Long
Shell "Notepad", vbNormalFocus
hWndNotepad = _

FindWindow(vbNullString, _
"Notepad - (Untitled)")

hWndNotepadText = _
152 SEPTEMBER 1996 Visual Basic Programmer’s Journal

LISTING 1 What OS Am I In? This class module, COpSysInfo, returns
your application is running under. It’s most useful for determ

NT and Windows 95 differ.

_

GetWindow(hWndNotepad, GW_CHILD)
Call SendMessageB(hWndNotepadText, _

WM_SETTEXT, Len(msg), msgB(0))

Although Unicode offers some exciting possibilities, you can
encounter some interesting challenges when you attempt to
make use of this expanded functionality. Windows 95’s general
Other than to acknowl-
edge it exists, Win-
dows 95 returns a fail-
ure code on most calls
that attempt to use
Unicode functions.
Under NT, VB4/32 can
call Unicode functions
and pass Unicode
“strings” to external
programs that under-
stand them, but unfor-
tunately I’ve found no
way to actually display
Unicode strings within
a VB application.
one into a text box from the clipboard, and you can’t directly
assign one to the Text property of a text box. No matter what
you do, you are left with those four meaningless question
marks signifying that there was no appropriate character
available in the Unicode-to-ANSI conversion that always oc
curs (see Figure 2). Even using the “W” version of SendMessage
a number of useful proper
ining which code block t

E

'
'
'
P

E

P

E

P

E

P

E

No Unicode Support In
Visual Basic. Apparently for

compatability with Windows 95, Microsoft
decided to explicitly disable NT’s native
Unicode support. If a true Unicode string
is sent to an intrinsic VB control, the
control displays it as a series of question
marks, regardless of which font is selected

FIGURE 2
Option Explicit
'
' Win32 APIs to determine OS information.
'
Private Declare Function GetVersionEx Lib "kernel32"
Alias "GetVersionExA" (lpVersionInformation As _
OSVERSIONINFO) As Long

Private Type OSVERSIONINFO
dwOSVersionInfoSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformId As Long
szCSDVersion As String * 128

End Type
Private Const VER_PLATFORM_WIN32s = 0
Private Const VER_PLATFORM_WIN32_WINDOWS = 1
Private Const VER_PLATFORM_WIN32_NT = 2
'
' Member variables.
'
Private m_os As OSVERSIONINFO
Private m_NT As Boolean
Private m_95 As Boolean

' ================================
' Initialize
' ================================
Private Sub Class_Initialize()
'
' Retrieve version data for OS.
'
m_os.dwOSVersionInfoSize = Len(m_os)
Call GetVersionEx(m_os)
'
' Determine and store values likely to be
' referenced often. VB4/32 will not run
' in Win32s, so needn't test for that.
'
Select Case m_os.dwPlatformId

Case VER_PLATFORM_WIN32_WINDOWS
m_95 = True
m_NT = False

Case VER_PLATFORM_WIN32_NT
m_95 = False
m_NT = True

End Select
nd Sub

 ================================
 Public Properties
 ================================
ublic Property Get MajorVersion() As Long
MajorVersion = m_os.dwMajorVersion
nd Property

ublic Property Get MinorVersion() As Long
MinorVersion = m_os.dwMinorVersion
nd Property

ublic Property Get BuildNumber() As Long
BuildNumber = WordLo(m_os.dwBuildNumber)
nd Property

ublic Property Get PlatformID() As Long
PlatformID = m_os.dwPlatformId
nd Property
http://www.windx.com

ties identifying the operating system that
o call when the requirements of Windows

CONTINUED ON PAGE 155.

PROGRAMMING
TECHNIQUES

CONTINUED FROM PAGE 154.

'

r

doesn’t work with VB controls:

Call SendMessageB(Text1.hwnd, _
WM_SETTEXT, Len(msg), msgB(0))

VB4’s lack of support for Unicode presumably stems from
Microsoft developers wanting to maintain compatibility with
Windows 95, which has virtually no built-
in support for Unicode at all. With very few
exceptions (see Knowledge Base article
Q125671), Windows 95 implements the “W”
functions as stubs, and these functions
will return failure every time. Also with
very few exceptions, nearly every Win32
API in NT that uses string parameters sup-
ports both the “A” and “W” versions. The
most glaring exceptions are 70 or so of the
NetXXX functions, which support only
Unicode strings.

WHICH WIN32 IS THIS?
Microsoft has consistently downplayed
the Win32 API differences between Win-
dows NT and Windows 95, but if you’ve
ever needed to support one app in both
environments and used more than a hand-
ful of API calls in it, you know that the
differences can range from subtle to stag-
gering. The nonsupport of Unicode in
Windows 95 makes for a prime example,
and I’m sure you’ve all run into others
that just drove you berserk as you fought
to find workarounds. VB4 provides the
Win16 and Win32 conditional compila-
tion constants, but doesn’t help you de-
termine which flavor of Win32 you’re ac-
tually running under.

I’ve put together a class module you
can use in VB4/32 to decide how to pro-
ceed based on the operating system in use.
(For the same capabilities using 16-bit VB3
or VB4, see Programming Techniques,
“Creeping Version-itis,” in the July 1995
http://www.windx.com
issue of VBPJ.) You can either create instances of it as needed or
create one global instance and refer to it whenever you must
decide which code to execute based on the operating system
you find yourself in.

As I’ve pointed out in previous columns, many Win32 API
calls have been greatly enhanced over their Win16 counter-
parts. The GetVersionEx API function definitely marks a vast
Public Property Get IsWinNT() As Boolean
IsWinNT = m_NT

End Property

Public Property Get IsWin95() As Boolean
IsWin95 = m_95

End Property

Public Property Get Platform() As String
If m_95 Then

Platform = "Windows 95"
Else 'm_NT

Platform = "Windows NT"
End If

End Property

Public Property Get Version() As String
'
' Build and return version info string.
Version = Platform & _
 " v" & MajorVersion & _
 "." & MinorVersion & _
 ", Build " & BuildNumber

End Property

Public Property Get CSDVersion() As String
CSDVersion = m_os.szCSDVersion

End Property

' ================================
' Private Methods
' ================================
Private Function WordLo(LongIn As Long) As Intege
'
' Low word retrieved by masking off high word.
' If low word is too large, twiddle sign bit.
'
If (LongIn And &HFFFF&) > &H7FFF Then

WordLo = (LongIn And &HFFFF&) - &H10000
Else

WordLo = LongIn And &HFFFF&
End If

End Function
Visual Basic Programmer’s Journal SEPTEMBER 1996 153

PROGRAMMING
TECHNIQUES
improvement over the older GetVersion API function. The
Initialize event of the COpSysInfo class makes a call to
GetVersionEx and stores the returned OSVERSIONINFO data
structure so that you can query it as needed (see Listing 1).

This OSVERSIONINFO structure contains much more useful
data than that returned by GetVersion. One element indicates
whether you’re running under Win32s, Windows (at this time,
that only applies to Windows 95, but you should consider it as
“Win32, but not NT”), or Windows NT. The Initialization event also
sets the value of two Boolean member variables used to indicate
whether Win95 or NT is running because you will probably
require this information more than anything else. (VB4/32 appli-
cations will not run under Win32s). If you have a section of code
that runs only in NT, you can decide whether to proceed like this:

' Don't bother if not running NT.
'
Dim os As New COpSysInfo
If os.IsWin95 Then

MsgBox "Win95 doesn't support Unicode", _
vbInformation, "Cannot Proceed"

Exit Sub
End If

The COpSysInfo class includes numeric properties that
return the MajorVersion, MinorVersion, and Build, all of which
are simply read from the OSVERSIONINFO structure. One prob-
lem many folks had with GetVersion was the need to break these
values out of the single returned Long integer, as major and
minor version numbers of both Windows and DOS were stored
in individual bytes. Though it is more tidy having these numbers
stored within their own elements of the OSVERSIONINFO struc-
ture, one oddity remains. The build number is stored within the
low word of the dwBuildNumber element. No documentation
exists for what’s returned in the high word.

Two other properties, Version and Platform, return string
representations and might prove useful in an About message
box or something similar. I wrote the Platform property to
return the name of the OS, either “Windows 95” or “Windows
NT.” The Version property appends all available data to the
name, such as “Windows 95 v4.0, Build 950.” One other element
of OSVERSIONINFO, szCSDVersion, is undocumented and doesn’t
currently provide any useful information.

PASSING CONTROL ARRAYS IN VB3
One of the more frequent questions I’ve seen online is, “How do
I pass a control array to a subroutine or function?” Strangely
154 SEPTEMBER 1996 Visual Basic Programmer’s Journal
enough, you can’t. At least, not directly. In order to pass a
control array, you must first convert it to an array of controls.
Confused yet? Though it sounds (and is!) pretty twisted, the
implementation remains fairly easy.

I wrote a little demo program that has a control array consisting
of 10 label controls on the main form. Each label control has a
different BackColor assigned to it and no Caption. This group of
label controls functions as a makeshift graph of sorts. By changing
the width of the labels, you can make them look like a horizontal bar
chart (see Figure 3). For the purpose of demonstrating, when the
user clicks on the form, the Form_Click event converts the control
array to an array of label controls, which is then passed to another
routine that actually changes the displayed data:

Sub Form_Click ()
ReDim Graph(0 To 9) As Label
Dim i As Integer

For i = LBound(Graph) To UBound(Graph)
Set Graph(i) = lblGraph(i)

Next i
DoGraphDisplay Graph()

End Sub

The called routine, DoGraphDisplay, can then iterate through
the array of controls, adjusting each label’s width appropriately
(or, for this demo, randomly). To make the demo interesting, I’ve
written the DoGraphDisplay routine to adjust each label 30 times,
giving the appearance of some sort of real-time monitoring chart:

Sub DoGraphDisplay (Bars() As Label)
Dim min As Integer, max As Integer
Dim i As Integer, j As Integer

min = Screen.TwipsPerPixelX
max = Bars(0).Parent.ScaleWidth - Bars(0).Left * 2
For i = 0 To 29

For j = LBound(Bars) To UBound(Bars)
Bars(j).Width = Rnd * (max - min) + min
Bars(j).Refresh

Next j
Next i

End Sub

This same method also works just fine in VB4, although the
newer version of VB adds some interesting alternative methods
as well. You may wish to explore passing the control array
directly, but you will need to declare the receiving routine’s
parameter As Variant.

Code Online
For all the current issue’s listings in one file, go to the Registered Level
of The Development Exchange (http://www.windx.com), The Microsoft
Network (GO WINDX), or CompuServe VBPJ Forum’s Magazine Library
(GO VBPJ). Development Exchange Premier Level subscribers ($20 for
six months) can get each article’s listings in a separate file, as well as
additional code and utilities for selected articles, plus archives of all
code ever published in VBPJ and Microsoft Interactive Developer
magazines.

Unicode Strings You Along
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ0996
Listings for this article (subscriber Premier Level): PT0996P
Makeshift Graph Control. One way to create a bar chart
is to simply use a control array of labels with varying colors

and widths. This technique can take less time to construct and require
fewer resources than using a VBX or OCX, if it suits your needs.

FIGURE 3
http://www.windx.com

	CODE!

