
PROGRAMMING
TECHNIQUES

PROGRAMMING
TECHNIQUES

Click & Retrieve
Source

CODE!
Replacing default context menus
offers new options.

Out of Context
by Karl E. Peterson
click on objects. In many cases, Windows programmers can
appreciate the default context menu options because they no
longer need to code them. However, in some cases it would be
nice to add a few more options to the defaults, or to prevent
the context menu from even appearing. Visual Basic offers no
native control over context menus. So, we must step outside
the boundaries and communicate directly with Windows to
accomplish this task.

Windows sends the WM_CONTEXTMENU message to a
window as notification that the user has right-clicked the
mouse. A program then may pass the message to that window’s
default window procedure, which will in turn display a de-
fault context menu. Alternately, if you design the program to
provide a custom context menu, this would be the signal to do
so. The problem is, Visual Basic doesn’t offer an event to
receive this message. I will present a method that uses Zane
Thomas’ MsgHook OCX, which is available with Visual Basic
4 How-To. A freeware version of this control, along with the
sample code from this column, is available online in a file
called PT0796.ZIP. Download the file from VBPJ’s Develop-
ment Exchange on the World Wide Web at http://
www.windx.com, or from the VBPJ CompuServe Forum, or
MSN site. For details, see “How to Reach Us” in Letters to the
Editor. Although the code presented uses VB4, the same
technique is equally viable in VB3 with any subclassing
control. For those using VB3, I’ve also included the VB3 code
for this technique in PT0796.ZIP.

Setting up MsgHook to intercept this message requires
just two lines of code in your Form_Load procedure:

Msghook1.HwndHook = Text1.hwnd
Msghook1.Message(WM_CONTEXTMENU) = True

indows 95 and Windows NT 4.0 provide default con-
text menus for nearly everything. Users have grown
to expect option menus to appear when they right-
http://www.windx.com

Karl E. Peterson is a GIS Analyst with a regional transportation
planning agency and a member of the Visual Basic Programmer’s
Journal Technical Review Board. Based in Vancouver, Washington,
he’s also an independent programming consultant and a writer. Karl
coauthored Visual Basic 4 How-To, from Waite Group Press. Online,
he’s a section leader in the VBPJ Forum 32-Bit Bucket and a
Microsoft MVP@Large in the MSBASIC Forum. Contact Karl in either
CompuServe location at 72302,3707.
The first line tells MsgHook which control’s messages to
monitor. The second line specifies that you want to be noti-
fied whenever a window receives the WM_CONTEXTMENU
message. If there are multiple messages you want to hook for
a single window, you may add more by setting the Message
property for each message desired.

From that point on, whenever the user right-clicks the
mouse on the control being monitored, MsgHook will fire its
Message event. During this event, you have the option of
allowing Windows to display a default context menu, provid-
ing your own custom context menu, or simply inhibiting
display of any context menu (see Listing 1). The first param-
eter passed to the Message event identifies the message
received. Normally, you’d want to test this value to ensure it’s
the one you want. But because you’re only hooking one
L ,
t

co f
an
W t
ap
ISTING 1 What to Do? When the user right-clicks on an object
the application can decide whether to display the defaul

ntext menu, provide a custom context menu, or inhibit display o
y context menu. Windows 95 and Windows NT 4.x provide the
M_CONTEXTMENU message to notify both 16- and 32-bi
plications that it’s time to decide.

Private Sub Msghook1_Message(ByVal msg As Long, _
ByVal wp As Long, ByVal lp As Long, result As Long)
Select Case MenuOption

Case mdDefault

'
' Invoke default window procedure.
'

Call Msghook1.InvokeWindowProc(msg, wp, lp)
Case mdCustom

'
' Pop hidden custom menu, taking the
' new MS keyboard into account.
'

PreparePopup Text1
If lp = &HFFFFFFFF& Then

Me.PopupMenu mPopup, , 0, 0, _
mCustom(mcSurprise)

Else
Me.PopupMenu mPopup, , , , _

mCustom(mcSurprise)
End If

Case mdNone

'
' Do nothing. <g>
'

End Select
End Sub
Visual Basic Programmer’s Journal JULY 1996 135

PROGRAMMING
TECHNIQUES

PROGRAMMING
TECHNIQUES

LI
.
ll

bu u
mu n
message, you don’t need to do that this time.
The WM_CONTEXTMENU message uses wParam to identify

the window the message is targeted for, and lParam provides
the mouse position—x in the loword and y in the hiword. One
gotcha that you do need to be aware of is the new Microsoft
Natural Keyboard. This keyboard provides a special key used
just to trigger context menus. If the user presses that key, while
the mouse isn’t over your window, the mouse coordinates
passed with WM_CONTEXTMENU are both -1.

To allow display of the default context menu, call
MsgHook’s InvokeWindowProc method. This method calls
the default window procedure for the control, and internal
processing proceeds as expected. If you want to provide a
custom context menu, it’s important that you do not allow the
default window procedure to receive this message. That’s
easy enough—just don’t invoke the method. Instead, use the
PopupMenu method provided by Visual Basic to call up a
hidden menu from your form. PopupMenu will use the cur-
rent mouse position as the default for the menu, but you do
need to test whether WM_CONTEXTMENU was generated by
the keyboard. Otherwise, your context menu will appear
wherever the mouse is, which may be nowhere near your
form. If you don’t want any context menu to appear, it’s even
easier—do nothing at all! As an interesting aside, the
WM_CONTEXTMENU message is received between Visual
Basic MouseDown and MouseUp events.

WHAT’S THE CONTEXT?
Providing a custom context menu for edit controls (text
boxes) will generally require you to offer the standard op-
tions as well. It would be nice if there were a simple way to
append options to the default context menu, but there isn’t.
So you will need to determine which standard options are
appropriate at the moment this menu is requested. In this
case, you can call the PreparePopup routine when the
WM_CONTEXTMENU message is received (see Listing 2). You
could code a similar routine to handle your application’s Edit
menu as well. Call that routine during the Click event for the
top-level menu associated with the Edit submenu.

Certain editing options are straightforward. It wouldn’t
make sense to have Cut, Copy, or Delete enabled if there
were no text highlighted. Testing the text box’s SelLength
property will quickly tell you what to do about those. It also
wouldn’t make sense, or would certainly frustrate your
users, if Paste were enabled when there wasn’t text on the
clipboard. Use the Clipboard object’s GetFormat method to
determine this.

Visual Basic provides zero support for the ubiquitous
Undo option, however. For this, you must turn to the API.
You can send the EM_CANUNDO message to an edit control
to determine whether the previous action can be undone.
SendMessage will return True if it can, and False if it can’t.
Set the Enabled property for this menu entry accordingly. If
the user selects Undo, use SendMessage again to send an
EM_UNDO message to the control. Neither EM_CANUNDO
nor EM_UNDO makes use of the wParam or lParam param-
eters to SendMessage, so you must set both of these to zero.

NOT AGAIN!
Although this problem has been published many times before,
it remains one of the more frequently asked questions on
CompuServe: how can you prevent multiple instances of your
application from running? You can readily determine if an-
other instance of your application is already running by query-
ing the App object’s PrevInstance property. Check this value
136 JULY 1996 Visual Basic Programmer’s Journal
as your first form loads. If it’s True, then simply Unload.
Problem solved!

It gets slightly more complicated when you want to first
transfer focus to the running instance before you unload the
new one. You’ll need to find the previous instance, then manu-
ally activate it. The AppActivate statement comes very close to
providing the required functionality. However, it doesn’t alter
the windowstate of the targeted application, so if it’s running
as an icon it will remain that way. Again, the API comes to our
rescue.

You can use FindWindow to retrieve the window handle of
the previous instance’s main form if you know its caption (if
you know only part of the caption, as with an MDI application,
use the FindWindowPartial function I presented on page 113
in the September 1995 Programming Techniques column).
Before doing so, make sure the current form’s caption isn’t
identical to the one you’re searching for. Once you obtain the
handle, you need two more API calls to ensure that the
previous instance isn’t running as an icon, and to bring it to
the foreground. Calling ShowWindow with the SW_RESTORE
option meets the first criteria, and SetForegroundWindow
takes care of the second. Note that in Win16,
SetForegroundWindow doesn’t exist, so you’ll need to alias
SetActiveWindow if you’re compiling for both Win16 and
Win32 (see Listing 3). If you’re using VB3, omit all the 32-bit
declarations and conditionals.

WHAT’S A SYSINT?
You may have noticed something strange in the previous
topic’s listing. I declared the variable used to store a win-
en
STING 2 Setting Standard Options On a Context Menu
Visual Basic provides native methods to determine a

t one of the standard context menu options for edit controls. Yo
st utilize the API when deciding whether Undo should be a

Private Sub PreparePopup(cntl As TextBox)
'
' Can't cut, copy, or delete without
' a selection.
'
If cntl.SelLength Then

mCustom(mcCut).Enabled = True
mCustom(mcCopy).Enabled = True
mCustom(mcDelete).Enabled = True

Else
mCustom(mcCut).Enabled = False
mCustom(mcCopy).Enabled = False
mCustom(mcDelete).Enabled = False

End If
'
' Check clipboard for text to paste.
'
If Clipboard.GetFormat(vbCFText) Then

mCustom(mcPaste).Enabled = True
Else

mCustom(mcPaste).Enabled = False
End If
'
' See if last action can be undone.
'
If SendMessage(cntl.hwnd, EM_CANUNDO, 0, 0) Then

mCustom(mcUndo).Enabled = True
Else

mCustom(mcUndo).Enabled = False
End If

End Sub
http://www.windx.com

abled menu option.

PROGRAMMING
TECHNIQUES

n

i
w
f

d

I
a
t
v
c
i

i
W
a
w
w

ow handle like this:

Dim hPrev 'As SysInt

 readily admit borrowing this idea from Bruce McKinney,
uthor of Hardcore Visual Basic (Microsoft Press). One thing
hat has frustrated me to no end is the need to declare certain
ariables as Integer in Win16 and as Long in Win32. Windows
onsiders them integers, and that’s that. But, Visual Basic
nsists on making a distinction.

In his book, Bruce offers a devilishly sly workaround. I
ntend to use it as long as I’m writing code for both Win16 and

in32 environments, and I invite you to consider the impact of
lso adopting the style. It’s extremely unlikely that Microsoft
ill release another 16-bit version of Visual Basic, so this hack
ill have a short life. Still, it will save you thousands of
http://www.windx.com

LIS
ns
il

ocus. This technique is equally viable in VB3.
keystrokes, and probably make your code much more read-
able as well.

So, what’s the secret? Take a deep breath, then ponder the
implications of:

#If Win32 Then
DefLng A-Z

#ElseIf Win16 Then
DefInt A-Z

#End If

Stunning in its simplicity! These few lines declare that all
ontyped variables will be Long in Win32 and Integer in Win16.
LIST
on
rout

S

E

F
I

E

TING 3 Bail Out Gracefully. If your main form has a known
caption, you can use this method to restore a previous

tance of your application before exiting. The previous instance
l be restored from an icon (if necessary) and given foreground

'
' API Declarations
'
#If Win32 Then
Private Declare Function FindWindow Lib "user32" _

Alias "FindWindowA" (ByVal lpClassName As _
String, ByVal lpWindowName As String) As Long

Private Declare Function ShowWindow Lib "user32" _
(ByVal hWnd As Long, ByVal nCmdShow As Long) As

Long
Private Declare Function SetForegroundWindow Lib _

"user32" (ByVal hWnd As Long) As Long
#ElseIf Win16 Then
Private Declare Function FindWindow Lib "User" _

(ByVal lpClassName As Any, ByVal lpWindowName _
As Any) As Integer

Private Declare Function ShowWindow Lib "User" _
(ByVal hWnd As Integer, ByVal nCmdShow As _

Integer) As Integer
Private Declare Function SetForegroundWindow _

Lib "User" Alias "SetActiveWindow" (ByVal hWnd _
As Integer) As Integer

#End If
Private Const SW_RESTORE = 9

Private Sub Form_Load()
Dim SearchFor As String
Dim hPrev 'As SysInt
If App.PrevInstance Then

'
' Store aside default caption, then
' change caption for this instance.
'
SearchFor = Me.Caption
Me.Caption = "ByteMe!@$%^*&#"
'
' Find handle for previous instance.
' Restore if needed, and set focus.
'
hPrev = FindWindow(vbNullString, SearchFor)
Call ShowWindow(hPrev, SW_RESTORE)
Call SetForegroundWindow(hPrev)
'
' Unload current instance.
'
Unload Me

End If
End Sub
mat
ING 4 Get Rid of the MDI Icon Caption Bug. VB2 and VB3
contained a bug that prevented the caption from updating

the icon of a minimized MDI form. The MdiUpdateCaption
ine uses some API trickery to update an MDI form’s caption, no
ter what windowstate it’s currently in.

ub MdiCaptionUpdate (mFrm As MDIForm, Cap$)
Dim nRet As Integer
Dim hWndCap As Integer
Dim hDCCap As Integer
'
' Set new caption into its window
'
mFrm.Caption = Cap$
'
' If the form is minimized, then get the caption
' window's window handle, and send it the required
' message to initiate a repaint.
'
If mFrm.WindowState = 1 Then

hWndCap = GetCaptionHandle((mFrm.hWnd))
If hWndCap Then

nRet = SendMessage(hWndCap, WM_SHOWWINDOW, _
SW_PARENTCLOSING, 0&)

hDCCap = GetDC(hWndCap)
nRet = SendMessage(hWndCap, WM_ERASEBKGND, _

hDCCap, 0&)
nRet = ReleaseDC(hWndCap, hDCCap)

End If
End If
nd Sub

unction GetCaptionHandle (hWndIcon As Integer) As
nteger
Dim hWndCap As Integer
Dim Buffer As String
Dim nRet As Integer
'
' Search the master window list for the icon's
' caption, which is itself another window. Identify
' a caption window by their unique classname --
' #32772.
'
hWndCap = GetWindow(hWndIcon, GW_HWNDFIRST)
Do While hWndCap <> 0

If GetParent(hWndCap) = hWndIcon Then
Buffer$ = Space$(128)
nRet = GetClassName(hWndCap, Buffer$, _

Len(Buffer$))
Buffer$ = Left$(Buffer$, nRet)
If Buffer$ = "#32772" Then

GetCaptionHandle = hWndCap
Exit Function

End If
End If
hWndCap = GetWindow(hWndCap, GW_HWNDNEXT)

Loop
nd Function
Visual Basic Programmer’s Journal JULY 1996 137

PROGRAMMING
TECHNIQUES
This overrides the default data type of Vari-
ant that causes so much grief for so many.
Without this block of code, you would need
to code the previous example like this:

#If Win32 Then
Dim hPrev As Long

#Else
Dim hPrev As Integer
138 JULY 1996 Visual Basic Programmer’s Jo

#End If
If you’re using a number of API calls in
your applications, you’ll end up typing
these five lines over and over without re-
sorting to the SysInt trick. I know many of
you will object to relying on default behav-
iors, but you must admit just how much
better your code will read and how much
faster you can write it using this little trick.
I’d even wager that you could avoid a
urnal

number of common bugs with this auto-
matic type-casting in place. Think about it.
Plan on seeing it used in my columns as
long as VBPJ is covering 16-bit develop-
ment. I like it. Thanks, Bruce!

SWAT A VB3 BUG
A VB bug that exists in Versions 2 and 3
prevents caption updates on minimized
MDIForms. Fortunately, Microsoft fixed this
bug in VB4. Normally, when a window’s
window text is altered, it is also invali-
dated, which causes a repaint. This invali-
dation does not occur with MDIForm’s
caption windows under earlier versions of
VB, however. You can work around this by
finding the handle to the caption window,
and sending a pair of messages that causes
it to resize and repaint itself.

This workaround relies on the method
Windows uses when creating the windows
it manages. The caption below an icon is
actually a window. All caption windows in
Windows 3.x and Windows NT 3.x share
the same classname. By searching for this
common trait, you can identify top-level
windows of this type.

The GetCaptionHandle function uses the
GetWindow API to walk through the master
window list (see Listing 4). This function
checks each window to see if it’s an icon
caption window by calling the
GetClassName API, watching for the
“#32772” classname. After finding a caption
window, you will need to call the GetParent
API. The related icon is the parent of its
caption window, so calling the GetParent
API will either confirm a good hit or tell you
to keep looking. After the GetCaptionHandle
function checks all top-level windows, it
will return an invalid window handle (0) if
none match the criteria.

Setting the Caption property does
change the associated window text (as can
be shown with the GetWindowText API),
but Visual Basic isn’t forcing the repaint.
The MdiCaptionUpdate routine first sets
the MDIForm’s Caption property. If the
WindowState is not minimized, this is suf-
ficient. If the WindowState is minimized,
and the call to GetCaptionHandle succeeds,
two messages are sent to the caption win-
dow. Windows is first fooled into thinking
that the parent form is just now being
minimized with the WM_SHOWWINDOW
message. This causes Windows to resize
the caption window to fit its current win-
dow text.

Next, the WM_ERASEBKGND message
invalidates the entire caption window, and
therefore causes a repaint. Because the
WM_ERASEBKGND message must include
a device context handle in wParam, calls to
the GetDC and ReleaseDC APIs are on ei-
ther side of the SendMessage call. The final
http://www.windx.com

result is a correctly updated caption.

	Click for CODE!

