
PROGRAMMING
TECHNIQUES

Click & Retrieve
Source

CODE!
Who said windows must be
rectangular? Break out of the
rectangular rut.

by Karl E. Peterson

Don’t Be Square
1

K
p
V
n
W
g
c
W
l
a
r
l

Forum on CompuServe. Search for the file PT0496.ZIP, which

c f
t
s
a
a
1

S -
i
r

a
f ,
f
o

W
w
c
d

f
a
o
a l
m
w ,
t ,
h I
h

ascaded or tiled in a neat, predictable order. Why not break out o
hat rectangular rut? I’ll show you how to create a form that you can
hape in any way imaginable (see Figure 1). The technique is
vailable only in Windows NT and Windows 95, but it is equally
ccessible from VB3 (using CALL32.DLL, discussed in the VBPJ July
995 Programming Techniques column) or VB4.

Windows NT 3.51, and later Windows 95, introduced the
etWindowRegion API function. This function instructs the operat
ng system to draw any portion of a window inside the indicated
egion only—no going outside the lines, so to speak.

In Windows a region can be a rectangle, ellipse, or polygon, or
 combination of two or more of these shapes. You can use regions
or a variety of purposes. Regions may be filled, outlined, inverted
ramed, or used for hit-testing (testing cursor location), among
ther things.

All windows have clipping regions that define the area in which
indows allows drawing to occur. Clipping regions are updated
henever a window is resized, and when another window partially
overs or uncovers a window. SetWindowRegion further restricts
rawing to just within the region passed to it.

You create regions by passing descriptive coordinates to one o
 handful of functions. You pass the CreatePolygonRgn API an array
f POINTAPI structures defining a polygonal region. Windows
ssumes the polygon is closed. You also specify the polygon fil
ode—Alternate or Winding—to choose the method Windows
ill use when painting the polygon. For demonstration purposes

he two modes are similar. Alternate seems to be somewhat faster
owever. If the call is successful, CreatePolygonRgn returns a GD
andle to the newly created region.

t’s been more than 10 years since Microsoft released
Windows 1.0. Through most of that time, the windows that
composed Windows have been rectangular, and they
38 APRIL 1996 Visual Basic Programmer’s Journal

arl E. Peterson is a GIS analyst with a regional transportation
lanning agency and a member of the
isual Basic Programmer’s Journal Tech-
ical Review Board. Based in Vancouver,
ashington, he’s also an independent pro-

ramming consultant and a writer. Karl
oauthored Visual Basic 4 How-To, from
aite Group Press. Online, he’s a section

eader in the VBPJ Forum’s 32-Bit Bucket
nd a Microsoft MVP in the MSBASIC Fo-
um. Contact Karl in either CompuServe
ocation at 72302,3707.

©199
When you create GDI objects such as pens, brushes, and
regions, you typically delete them after you use them. However,
when you pass a region handle to SetWindowRgn, the operating
system takes control of that object, and you must not attempt to use
it for anything, or destroy it, after this call. To set a form’s window
region back to normal, pass a NULL (ByVal 0&) as the region
handle. The sample project uses a command button to toggle a
form’s window region between its normal rectangular shape and a
star-shaped polygon (see Listing 1).

To jazz up the demo, the Form_Paint event paints a bright red,
star-shaped polygon in the middle of the form using only API calls.
First, you create a red brush with CreateSolidBrush. Then, using
CreatePolygonRgn, create a region to match the form’s window
region. Call FillRgn to fill the polygon using the brush passed as the
third parameter (see Listing 2). At that point, because they won’t
be used again, delete the brush and region with calls to DeleteObject.
Finally, use the Polyline function to outline the polygon.

Notice that you use a different point array with FillRgn than with
SetWindowRgn. Window regions use coordinates relative to the
upper-left corner of the window, while drawing functions use
coordinates relative to the device context. In this case, the device
context of the form is equivalent to the form’s client area. You need
to calculate two point arrays if you want to draw within the window
region you set for your form. Or, at the very least, you need to offset
the window region’s points from your form’s coordinates to reflect
the different coordinate system’s origins. The easiest way to do this
is to add the values for border width and caption height returned
by GetSystemMetrics to the coordinates you’ll use for drawing on
the form (see Listing 3). Set the form’s Scalemode to Pixels, because
that’s the coordinate system GDI uses.

Due to space limitations, the complete project is not printed
here. You can download it from the Magazine Library of the VBPJ
Shape Up Your Windows. Two instances of the WinRgn
demo show it with and without active window region

clipping. The command button toggles between these two states.

FIGURE 1
http://www.windx.com1–1996 Fawcette Technical Publications

PROGRAMMING
TECHNIQUES

r
n
p

C
O
w
m
f
t

contains not only this project but all the code from this column.
You can also download the code from VBPJ’s WWW and MSN sites
(for details, see the “How to Reach Us” section in Letters to the
Editor). If you decide to build a project using this technique, you’ll
probably want to add support for dragging the form without the
caption bar. For two approaches to this, see either the Microsoft
Knowledge Base article Q114593 (“How to Move a Form that Has
No Titlebar or Caption”) or my book, Visual Basic 4 How-To from
Waite Group Press.

ANYONE REMEMBER TRIG?
I had to ask that question on CompuServe recently, as my
memory had failed me. I needed the formula for calculating an
(x, y) pair, given a starting position and a vector (direction and
distance). Within a short time, several people responded. I
found the formula useful, so I will repeat it for the rest of you
whose trigonometry textbooks are also rotting in a box out in
your garage. The basic formulas are:

x2 = x1 + (Radius * Sin(Theta))
y2 = y1 + (Radius * Cos(Theta))

Where (x1, y1) is the starting point, Radius is the distance to
move, and Theta is the angle expressed in radians. To convert
http://www.windx.com

G
c
y

Create, Clip, and Toggle. It takes only two API calls to
create a region and tell Windows not to draw any

portion of the window that lies outside this region. The command
button acts as a toggle, alternately turning on and off the special
effect. Listing 3 shows how the point array was derived.

LISTING 1

VB4

)

Draw Only Within the Window Region, Please.
Regions are also useful for painting polygons. Here, an

offset array of points is used to compensate for the different origins
of the form and its client area. Because the array already exists, the
Polyline API provides the fastest way to outline it.

LISTING 2

VB4

End Sub

degrees to radians, multiply degrees by pi/180. To convert

©1991–1996 Fawcette Technical Publication
adians to degrees, multiply radians by 180/pi. I put this tech-
ique to use in the CalcRgnPoints routine that calculates the
oints of the star (see Listing 3).

ONTAINING THE CURSOR WITHIN A FORM OR CONTROL
ccasionally a situation requires a response from the user. One
ay to get the user’s attention is to restrict the cursor’s range of
ovement. Windows provides the ClipCursor API call that per-

orms this cursor clipping. I’ve built both VB3 and VB4 modules
hat allow you to define which control or form you’d like the cursor
Private Sub Command1_Click()
Dim hRgn As Long
Static UsingPoly As Boolean
' Flag variable tracks current state.
UsingPoly = Not UsingPoly
If UsingPoly Then

' Create a region, then turn on
' clipping to that region.
hRgn = CreatePolygonRgn(rgnPts(0), nPts, ALTERNATE
Call SetWindowRgn(Me.hWnd, hRgn, True)

Else
' Turn off clipping.
Call SetWindowRgn(Me.hWnd, 0&, True)

End If
End Sub
Private Sub Form_Paint()
Dim hBrush As Long
Dim hRgn As Long
' Create region and a brush to fill it with.
hBrush = CreateSolidBrush(vbRed)
hRgn = CreatePolygonRgn(scnPts(0), nPts, ALTERNATE)
Call FillRgn(Me.hdc, hRgn, hBrush)
' Clean up GDI objects.
Call DeleteObject(hRgn)
Call DeleteObject(hBrush)
' Draw outline around polygon.
Call Polyline(Me.hdc, scnPts(0), nPts + 1)
LI
D
lie
ou

s

Private Static Sub CalcRgnPoints()
ReDim scnPts(0 To nPts) As POINTAPI
ReDim rgnPts(0 To nPts) As POINTAPI
Dim angle As Long, theta As Double
Dim radius1 As Long, radius2 As Long
Dim x1 As Long, y1 As Long
Dim xOff As Long, yOff As Long
Dim n As Long
'
' Some useful constants.
'
Const Pi# = 3.14159265358979
Const DegToRad# = Pi / 180
'
' Calc radius based on client area size.
'
x1 = Me.ScaleWidth \ 2
y1 = Me.ScaleHeight \ 2
If x1 > y1 Then

radius1 = y1 * 0.85
Else

radius1 = x1 * 0.85
End If
radius2 = radius1 * 0.5
'
' Offsets to move origin to upper
' left of window.
'
xOff = GetSystemMetrics(SM_CXFRAME)
yOff = GetSystemMetrics(SM_CYFRAME) + _

GetSystemMetrics(SM_CYCAPTION)
'
' Step through a circle, 10 degrees each
' loop, finding points for polygon.
'
n = 0
For angle = 0 To 360 Step 10

theta = (angle - offset) * DegToRad
'
' First region is for drawing.
' One long, one short, one long...
'
If n Mod 2 Then

scnPts(n).x = x1 + (radius1 * (Sin(theta)))
scnPts(n).y = y1 + (radius1 * (Cos(theta)))

Else
scnPts(n).x = x1 + (radius2 * (Sin(theta)))
scnPts(n).y = y1 + (radius2 * (Cos(theta)))

End If
'
' Second region is for clipping.
' Add offsets.
'
rgnPts(n).x = scnPts(n).x + xOff
rgnPts(n).y = scnPts(n).y + yOff
n = n + 1

Next angle
End Sub
Visual Basic Programmer’s Journal APRIL 1996 139

STING 3 Offset Plotting. The coordinates of a window’s region
are relative to the upper-left corner of the window, while

I drawing functions use coordinates relative to a window’s
nt space. First, you generate one set of points for drawing, then
 add offsets to each point so the window’s region will coincide.

PROGRAMMING
TECHNIQUES
restricted to (see Listing 4).
VB4 has added support for the Name property to code

modules, and you may preface procedure names with their
respective module name, therefore allowing duplicate proce-
dure names in a single project. You can also use this feature to
make your code more readable. In the VB4 demo for this topic,
I’ve named the module “Cursor.” As an example of how readable
this new syntax makes code, consider these calls made after a
command button click (see Figure 2):

Private Sub Command1_Click()
Cursor.RestrictToControl Picture1
Cursor.CenterOnControl Picture1

End Sub

The RestrictToControl procedure calls the GetWindowRect API
140 APRIL 1996 Visual Basic Programmer’s Journal

LISTING 4

_

 _

Contain Your Cursor. You can use this module to center a
a separate VB3 project with the same capabilities along wi

VBPJ WWW or MSN sites described elsewhere in this column (searc

VB4

function to determine the size and position of the control. Not all

©199
controls support the hWnd property used by the GetWindowRect
API, though. If a lightweight control (such as a label, image, or
shape) is passed to RestrictToControl, an error trap catches it and
gracefully exits the procedure. If no error occurs, the
RestrictToControl procedure calls the more generic RestrictToRect
procedure, passing the rectangle returned by GetWindowRect. To
put the cursor clipping into effect, RestrictToRect calls the
ClipCursor API.

In this demo, double-clicking on the picture box releases the
cursor clipping. The Release procedure is called from the
Picture1_DblClick event, and it in turn calls ClipCursor again. To
release cursor clipping, pass a NULL pointer in place of the clipping
rectangle:

Call ClipCursor(ByVal 0&)

Things get just a little trickier if you want to restrict the
cursor to your entire form. The problem occurs if the user tries
to resize or move the form. This action can release the cursor
clipping in certain circumstances. So, in the Cursor module, the
Restrict-ToForm procedure sets the clipping rectangle equal to
the form’s client area by calling the GetClientScrnRect proce-
dure. The GetClientRect API function won’t do in this situation
because the clipping rectangle must be expressed in screen
coordinates. GetClientRect returns the width and height of a
client window, but not its left or top positions. Instead, you use
GetWindow-Rect, then you call GetSystemMetrics to make ad-
justments to eliminate the borders and caption (this code is not
printed in this column, but you may download it from the online
services described elsewhere
in the magazine).

ERASING THE DEBUG WINDOW
VB3’s Debug window is a useful tool for outputting data while
Cursor Clipping, On Command. Pressing the command
buttons in this project restricts the cursor to either the

picture box or the form. Double-clicking on the picture box releases
the cursor, allowing you to move it anywhere on screen.

FIGURE 2
Option Explicit
' Win32 API Declarations, Type
' Definitions, and Constants
Private Type RECT

left As Long
top As Long
right As Long
bottom As Long

End Type

Private Declare Function SetCursorPos Lib "user32"
(ByVal x As Long, ByVal y As Long) As Long

Private Declare Function ClipCursor Lib "user32" _
(lpRect As Any) As Long

Private Declare Function GetWindowRect Lib "user32"
(ByVal hwnd As Long, lpRect As RECT) As Long

Public Sub RestrictToControl(cntl As Control)
Dim r As RECT
' This routine only accepts controls
' which support the hWnd property.
' Handle errors by ignoring them.
On Error Resume Next
Call GetWindowRect((cntl.hwnd), r)
n
th
h

1–
If Err.Number = 0 Then
Call Cursor.RestrictToRect(r)

End If
End Sub

Public Sub CenterOnControl(cntl As Control)
Dim r As RECT
' This routine only accepts controls
' which support the hWnd property.
' Handle errors by ignoring them.
On Error Resume Next
Call GetWindowRect((cntl.hwnd), r)
If Err.Number = 0 Then

Cursor.CenterOnRect r
End If

End Sub

Private Sub CenterOnRect(lpRect As RECT)
' Use API to place cursor at center
' of rectangle.
Call SetCursorPos(lpRect.left + _

(lpRect.right - lpRect.left) \ 2, _
lpRect.top + (lpRect.bottom - _
lpRect.top) \ 2)

End Sub
http://www.windx.com

d/or contain the cursor within either a form or control. Download
 this month’s code from the VBPJ Forum on CompuServe, or the

 for PT0496.ZIP).

1996 Fawcette Technical Publications

PROGRAMMING
TECHNIQUES

a
h
u
w
u
b
b
s
t
p

you’re testing a program. It’s often conve-
nient to have the contents of the Debug
window stay intact between invocations of
the program, but at other times it would
be nice to have a simple method for clear-
ing its contents so new output will stand
alone. I’ll show you a simple routine I use
when I want to repeatedly output new
data with each run.

The only secret involved is the class
name used by VB3’s Debug Window—
OFEDT. Given that, you can use the
FindWindow API to obtain its handle. If
the FindWindow call is successful, the
last preparation for clearing the Debug
window is to obtain the handle of the text
box it uses to display its output. Think of
the Debug window as a one-control form,
with the text area its only child. A call to
GetWindow, passing the Debug window’s
handle and using the GW_CHILD option,
retrieves the handle for the text box. At
this point, one more call to SendMessage
finishes the job. Passing the WM_
SETTEXT message to the text box, along
http://www.windx.com

Clearing VB3’s Debug
Window. Place this code into a

new module, and then include it in your
project whenever you’d like to have the
capability of clearing VB3’s Debug window
for new output.

LISTING 5

VB4

End Sub

©1991–1996 Fawcett
with new text to display, will replace
whatever was there. To clear the Debug
window, simply pass an empty string.

A few words of precaution are in order.
The DebugClear routine will be reliable
only if one instance of VB3 is running (see
Listing 5). In addition, it shouldn’t be
called from a compiled EXE. If it were,
most likely nothing bad would happen.
But, if your application is running on
Visual Bae Technical Publications
nother developer’s machine, which also
appens to be running VB3, you may
nintentionally wipe out the wrong Debug
indow. Still, in many cases, you will find
ses for DebugClear. I used it in a set of
enchmarks where a new “report” would
e output to the Debug window with each
uccessive run. Clearing the last run at
he start of each new set of timings
rovided nice clean output.
Declare Function FindWindow Lib _
"User" (ByVal lpClassName As Any, _
ByVal lpWindowName As Any) As Integer

Declare Function GetWindow Lib _
"User" (ByVal hWnd As Integer, _
ByVal wCmd As Integer) As Integer

Declare Function SendMessage Lib _
"User" (ByVal hWnd As Integer, _
ByVal wMsg As Integer, ByVal _
wParam As Integer, lParam As Any) _
As Long

Global Const GW_CHILD = 5
Global Const WM_SETTEXT = &HC

Sub DebugClear ()
Dim hDebug As Integer
Dim hDebugTxt As Integer
Dim nRet As Integer
'
' Search for handle to Debug
' window.
'
hDebug = FindWindow("OFEDT", 0&)
'
' If found, get handle to first
' child window, the actual
' textbox, and use SendMessage to
' set it to "".
'
If hDebug Then

hDebugTxt = GetWindow(hDebug, _
GW_CHILD)

nRet = SendMessage(hDebugTxt, _
WM_SETTEXT, 0, ByVal "")

End If
sic Programmer’s Journal APRIL 1996 141

	Source Code

