
PROGRAMMING TECHNIQUES

by Karl E. Peterson

PLAYING THE
SHELL GAME
ber of Microsoft Knowledge Base (KB) ar-
ticles. To find it, open the Help file to the
Contents page, select Technical Support, then
select Knowledge Base Articles on VB. If
you’ve never found this resource before, you
will be rewarded with articles on a dozen of
the most frequently asked questions regard-
ing Visual Basic. This column will look at a
couple of these questions, expand upon them,
and see where that takes us. If you’re in-
trigued by what you find in the Help file, the
complete Knowledge Base consists of thou-
sands of articles, and can be found on
CompuServe (GO MSKB) or on the Microsoft
Developer Network CDs.

Perhaps the question asked most often is, “How do I determine
when a shelled process has terminated?” The solution is simple.
Although poorly documented, the Shell function returns an
instance handle to the process that the Shell function just
started. The Windows API function GetModuleUsage, given an
instance handle, returns the “reference count” for that module.
To determine when the process has completed, enter an idle
loop and check this value repeatedly until it’s decremented to
zero. To use this technique, place this declaration within your
project:

Declare Function GetModuleUsage Lib “Kernel” (ByVal _
hModule As Integer) As Integer

And, perform your Shell like this:

Dim hInst As Integer
hInst = Shell(“Notepad.Exe”, 1)
Do

DoEvents
Loop While GetModuleUsage(hInst)

GetModuleUsage will continue to return a positive result as
long as this instance of Notepad is running. Calling DoEvents
within the loop reduces required processor time to a minimum,
because control is immediately returned to Windows as soon as
it’s determined (using the results of the GetModuleUsage call)
that Notepad is still running.

BUILD A BETTER SHELL
While Visual Basic’s Shell function is versatile, it could be better.
For example, now that you know when your shelled application
has finished, it may not be necessary for it to remain visible as

ying somewhat buried within the
Visual Basic Help file, unknown to
many, is a page that contains a num- THE MIC

KNOW

BASE PR

HID

RESOUR

TECHN

SUPP
110 SEPTEMBER 1995 Visual Basic Programmer’s Journal
it executes. But among the WindowStyle (sec-
ond parameter) values supported by Shell,
the function lacks an option to invisibly start
the process. Shell turns out to be a wrapper
function for the WinExec API call—notice the
correspondence between the ShowWindow
constants (found in any API reference) and
those used with Shell. But, one constant not
supported by Shell is present, SW_HIDE,
which has a value of zero.

The ShellAndWait function requires both
a command line to execute and any one of the
ShowWindow parameters as defined by the
API (see Listing 1). To include this function in
your project, place the necessary declara-
tions and constant definitions in one of your
modules. Then add the ShellAndWait func-
tion to your project. Call it just as you would

Shell, using any of the ShowWindow constants as the desired
WindowStyle. If you pass SW_HIDE as the second parameter, the
spawned process will be invisible. Before experimenting with
this, you should ensure that the process will end on its own
without user intervention.

If the WinExec function fails, it returns a value less than 32.
The potential error values can be found in nearly any API
reference, and you may want to add code that will act to solve
any errors you encounter. An applet that demonstrates the
various ShowWindow parameter options, SHELLEX.MAK, is in-
cluded with the archive of code from this article, and can be
downloaded from the Magazine library of the VBPJ Forum on
CompuServe.

USING A GETWINDOW LOOP
While it’s certainly nice to know when a shelled process has
terminated, sometimes you will need to interact with it while it’s
running. Generally, you must have a window handle (hWnd) to
do this. Newcomers to the Windows API often confuse window
handles required for other functions with instance handles
(hInst) returned by Shell.

To convert an hInst to an hWnd, the most reliable method is
to run through what’s called a GetWindow loop. Such a loop

ROSOFT

LEDGE

OVIDES

DEN

CES ON

ICAL

ORT.
Karl E. Peterson is a GIS Analyst with a regional transportation
planning agency and a member of the VBPJ Technical Review
Board. He’s also an independent programming consultant and a
writer based in Vancouver, Washington. The book he coauthored
is scheduled for publication concurrent with the upcoming release
of a major programming language <g>. He’s the 32-Bit Bucket
Section Leader for the VBPJ Forum and a Microsoft MVP in the
MSBASIC Forum. Contact Karl in either CompuServe location at
72302,3707.
©1991–1995 Fawcette Technical Publications H O M E

PROGRAMMING TECHNIQUES
finds the first window in the master task list that Windows
maintains, and checks various criteria to see if that window is
the one of interest. If the desired window was found, the
GetWindow loop is exited, and that window’s hWnd is returned
as the result. Otherwise, the looping process continues until all
windows have been inspected.

The GetHWndByInst function uses an hInst to retrieve the
corresponding hWnd for an application’s main window (see
Listing 2). To call this function, simply pass the hInst returned
by either Shell or WinExec as its only parameter. GetHWndByInst
begins its search by obtaining the hWnd for the first window in
the master task list maintained by the system. Passing NULL
pointers for both parameters of the FindWindow API function
illustrates an apparently undocumented method to obtain this
starting window’s handle.

Because only top-level windows—those with no parents—
are of interest, the first filter applied uses the GetParent API. If
a parent exists, the loop continues with the next window. You
can use the GetWindowWord API to retrieve the instance handle
of any given window. If there is no parent window, the instance
handle for the window you are currently testing is compared
©1991–1995 Fawcette Technical Publications H O M E
with the hInst passed into the function. If the instance handles
match, the GetHWndByInst function is assigned the correspond-
ing hWnd as its return value, and the loop is exited.

A similar loop is briefly discussed in the Knowledge Base
article, “How to Get Windows Master List (Task List) Using
Visual Basic,” found in the Visual Basic Help file. Here, the same
basic construct was used, but additional criteria were applied to
filter the results. There are many other ways to take advantage
of such a GetWindow loop. This example is simply the first of
several methods I’ll present in this column.

Have you ever wanted to transfer focus to an application you
know is running, but you’ve been unsure what its current
caption was? VB’s AppActivate statement requires that you
know the exact caption, or else AppActivate fails. You can use a
GetWindow loop in these instances to walk through the master
task list, checking the caption of each parentless window and
looking for one that contains or starts with a given string.

To construct this useful function, add the required API
declarations and constant definitions (see Listing 3). Then, add
the AppActivatePartial function that calls the FindWindowPartial
function (both functions are also shown in Listing 3). This
' Win16 API Declarations
Declare Function WinExec Lib "Kernel" (ByVal lpCmdLine _
As String, ByVal nCmdShow As Integer) As Integer

Declare Function GetModuleUsage Lib "Kernel" (ByVal _
hModule As Integer) As Integer

' ShowWindow() Constants
Global Const SW_HIDE = 0
Global Const SW_SHOWNORMAL = 1
Global Const SW_SHOWMINIMIZED = 2
Global Const SW_SHOWMAXIMIZED = 3
Global Const SW_SHOWNOACTIVATE = 4
Global Const SW_SHOW = 5
Global Const SW_MINIMIZE = 6
Global Const SW_SHOWMINNOACTIVE = 7
Global Const SW_SHOWNA = 8
Global Const SW_RESTORE = 9

Function ShellAndWait (ByVal CmdLine$, ByVal CmdShow%) _
As Integer
Dim hInstShell%
'
' Trim any leading or trailing CmdLine spaces,
' and make sure CmdShow is valid.
'
CmdLine = Trim$(CmdLine)
If CmdShow < SW_HIDE Or CmdShow > SW_RESTORE Then

CmdShow = SW_SHOWNORMAL
End If
'
' Issue shell directive.
'
hInstShell = WinExec(CmdLine, CmdShow)
If hInstShell >= 32 Then

'
' Program executed normally! Use Win16
' method of waiting for task to complete.
'
Do While GetModuleUsage(hInstShell)

DoEvents
Loop
'
' Indicate success.
'
ShellAndWait = True

End If
End Function

An Enhanced Shell Function. The ShellAndWait
function uses the WinExec API to start an application,

but expands on Shell’s usefulness by supporting all possible
ShowWindow styles. ShellAndWait also waits until the spawned
application terminates before returning control to your application.

LISTING 1
' Required Win16 API declarations
Declare Function FindWindow Lib "User" (ByVal _
lpClassName As Any, ByVal lpWindowName As Any) _
As Integer

Declare Function GetParent Lib "User" (ByVal hWnd%) _
As Integer

Declare Function GetWindowWord Lib "User" (ByVal _
hWnd%, ByVal nIndex%) As Integer

Declare Function GetWindow Lib "User" (ByVal hWnd%, _
ByVal wCmd%) As Integer

' Constant used by GetWindowWord to find next window
Global Const GW_HWNDNEXT = 2

Function GetHWndByInst (hInstFind%) As Integer
Dim hWndTmp%
'
' Find first window and loop through all subsequent
' windows in master window list.
'
hWndTmp = FindWindow(0&, 0&)
Do Until hWndTmp = 0

'
' Make sure this window has no parent.
'
If GetParent(hWndTmp) = 0 Then

'
' Compare passed hInst against this window's
' hInst.
' If a match, then return hWnd for current
' window.
'
If hInstFind% = GetWindowWord(hWndTmp, _

GWW_HINSTANCE) Then
GetHWndByInst = hWndTmp
Exit Do

End If
End If
'
' Get next window in master window list and
' continue.
'
hWndTmp = GetWindow(hWndTmp, GW_HWNDNEXT)

Loop
End Function

Converting an Instance Handle to a Window
Handle. The GetHWndByInst function loops through

the master task list searching for the first hInst that matches one
returned by the Visual Basic Shell function or the WinExec API
function.

LISTING 2
Visual Basic Programmer’s Journal SEPTEMBER 1995 111

PROGRAMMING TECHNIQUES
method has been separated into two distinct functions for when
you simply want to obtain the hWnd for the first window that
matches a given caption.

Call AppActivatePartial with the string you’re looking for and
a constant indicating whether the caption must start with, or
simply contain, the partial title string. For example, Microsoft
Word’s caption changes to reflect the current document the
program is processing. To locate a running instance of Word,
you could call AppActivatePartial in one of two ways. While the
first choice would have a high probability of success if Word
were running, the second option could just as easily turn up
WordPad if your program were running under Win95. It’s always
best to be as specific as possible:

AppActivatePartial “Microsoft Word”, FWP_STARTSWITH
AppActivatePartial “Word”, FWP_CONTAINS

AppActivatePartial works by calling FindWindowPartial with
the same method constant as it received. If FindWindowPartial
returns a valid hWnd, AppActivatePartial uses the
©1991–1995 Fawcette Technical Publications H O M E
SetActiveWindow API to transfer focus to that application.
Because this routine is just a demonstration of the technique, I
used a MsgBox to alert the user if the routine did not find the
application. In a production application, you’d want to replace
the MsgBox with more suitable error-handling code. In addition
to SetActiveWindow you may also want to use ShowWindow to
change the target application’s WindowState, or MoveWindow
to move or resize it.

The FindWindowPartial function is very similar to the
GetHWndByInst function. Before entering the GetWindow loop,
the passed partial title string is uppercased so that comparisons
won’t take case into consideration. Again, you use FindWindow
to obtain the first window, and GetParent to filter out child
windows. For all the top-level windows found, use the
GetWindowText API to obtain their captions. Uppercase these,
then search with Visual Basic’s Instr function to see if they either
start with or contain the partial title string. A demonstration
applet, FINDPART.MAK, is included with the archive of code
from this article, and can be downloaded from the VBPJ Forum
on CompuServe. ■
' Required Win16 API declarations
Declare Function FindWindow Lib "User" (ByVal _
lpClassName As Any, ByVal lpWindowName As Any) As Integer

Declare Function SetActiveWindow Lib "User" (ByVal hWnd _
As Integer) As Integer

Declare Function GetWindow Lib "User" (ByVal hWnd As _
Integer, ByVal wCmd As Integer) As Integer

Declare Function GetWindowText Lib "User" (ByVal hWnd As _
Integer, ByVal lpString As String, ByVal aint As _
Integer) As Integer

Declare Function GetParent Lib "User" (ByVal hWnd As _
Integer) As Integer

' Constant used by GetWindowWord to find next window
Global Const GW_HWNDNEXT = 2

' Constants used by FindWindowPartial
Global Const FWP_STARTSWITH = 0
Global Const FWP_CONTAINS = 1

Sub AppActivatePartial (TitleContains$, Method%)
Dim hWndApp As Integer
Dim nRet As Integer
'
' Retrieve window handle for first top-level window
' that starts with or contains the passed string.
'
hWndApp = FindWindowPartial(TitleContains, Method)
If hWndApp Then

'
' Switch to it.
'
nRet = SetActiveWindow(hWndApp)

Else
'
' Alert user that request failed.
'
MsgBox "No matching applications found."

End If
End Sub

Function FindWindowPartial (ByVal TitlePart$, Method%) _
As Integer
Dim hWndTmp As Integer
Dim nRet As Integer
Dim TitleTmp As String
'
' Alter partial title for case-insensitive compares.

'
TitlePart = UCase(TitlePart)
'
' Find first window and loop through all subsequent
' windows in master window list.
'
hWndTmp = FindWindow(0&, 0&)
Do Until hWndTmp = 0

'
' Make sure this window has no parent.
'
If GetParent(hWndTmp) = 0 Then

'
' Retrieve caption text from current window.
'
TitleTmp = Space(256)
nRet = GetWindowText(hWndTmp, TitleTmp, _

Len(TitleTmp))
If nRet Then

'
' Clean up return string, preparing for
' case-insensitive comparison.
'
TitleTmp = UCase(Left(TitleTmp, nRet))
'
' Use appropriate method to determine if
' current window’s caption either starts
' with or contains passed string.
'
Select Case Method

Case FWP_STARTSWITH
If InStr(TitleTmp, TitlePart) = 1 Then

FindWindowPartial = hWndTmp
Exit Do

End If
Case FWP_CONTAINS

If InStr(TitleTmp, TitlePart) Then
FindWindowPartial = hWndTmp
Exit Do

End If
End Select

End If
End If
'
' Get next window in master window list and continue.
'
hWndTmp = GetWindow(hWndTmp, GW_HWNDNEXT)

Loop
End Function

Finding a Window With Only a Partial Caption. The FindWindowPartial function uses a GetWindow loop to find the first
top-level window whose caption matches that caption passed in. You have the option of matching captions that either start

with or contain the search text and are case-insensitive. The AppActivatePartial subroutine uses FindWindowPartial to convert an hInst
(returned by Shell) to an hWnd, then activates the found application.

LISTING 3
Visual Basic Programmer’s Journal SEPTEMBER 1995 113

	Playing the Shell Game
	Source Code

