
3

S U B C L A S S I N G

Jo
Subclass Your Way
Around VB’s Limitations

These eight subclassing techniques enable
you to customize your apps in ways that Visual Basic

native code doesn’t allow.
4 SEPTEMBER 1995 Visual Basic Progra

nathan Wood writes commercial and custo
the Windows messaging system. When an
event occurs, Windows sends messages
to the affected windows. For example,
when the user resizes a window, Win-
dows sends a WM_SIZE message to the
window being resized. Visual Basic does
not expose this message directly but in-
stead provides a Resize event handler
that Visual Basic calls when it receives
this message.

However, other messages, such as
WM_SYSCOMMAND, which is sent when
the user selects a command from the
window’s system menu, have no corre-
sponding Visual Basic event handler. Vi-
sual Basic provides no direct support for
responding to these messages.

Fortunately, Visual Basic’s design is
made considerably more flexible by its
support for VBX custom controls. A num-
mmer’s Journal

m software in Visual Basic, Visual C++, and

©1991–1995 Fawcette T
ber of such controls have been developed
to allow you to respond to any message
sent to a particular window. These con-
trols are commonly called subclassing
controls. A subclassing control provides
a Message event handler that is called
when Windows sends selected messages
to the window you specify.

In this article, we’ll show you our eight
favorite subclassing techniques. These
techniques demonstrate tasks that are only
possible in Visual Basic using a subclassing
control. But before we present these ex-
amples, let’s discuss how Windows mes-
sages and subclassing controls work.

What exactly does it mean when we
say “send a message to a window?” Under
Microsoft Windows, each window has an
associated window procedure that de-
fines the behavior of that window. Often,
the same procedure is used by more than
one window. For example, all standard
text boxes are associated with the same
window procedure. When Windows de-
tects an event such as a key being pressed,
or the user pressing the left mouse but-
ton, Windows calls the procedure associ-
ated with the affected window. Window
procedures are normally written in C and
can’t be written in Visual Basic. If you
could write a window procedure in Visual
Basic, it might look something like this:

Function WinProc (hWnd As Integer, _
msg As Integer, wParam As _
Integer, lParam As Long) As Long
Select Case msg

Case WM_PAINT
' Code to paint the window
Case WM_LMOUSEDOWN
assembly language. His company, SoftCircuits, is located in Irvine, California. Reach him
on the VBPJ Forum (he’s the section leader of the DLL/API Lab section) and MSBASIC
Forum on CompuServe at 72134,263.
Karl E. Peterson is a GIS Analyst with a regional transportation planning agency, an
independent programming consultant, and a writer based in Vancouver, Washington. He

recently coauthored Visual Basic 4.0 How-To, from the Waite
Group Press. He’s the 32-Bit Bucket Section Leader for the
VBPJ Forum and a Microsoft MVP in the MSBASIC Forum.
Contact Karl in either CompuServe location at 72302,3707

The code accompanying this article (and the subclassing
tool used here) is available on the VBPJ Forum on
CompuServe—GO VBPJFORUM to get there. All code for this
issue will be in the Magazine Library). CompuServe is now
available directly from the Internet. Go to CompuServe’s home
page to find out how at http://www.compuserve.com. If you
don’t have access to CompuServe, the code will be available
in a future issue of the VB-CD Quarterly. Call 800-848-5523 to
order a subscription to the VB-CD Quarterly.
BY JONATHAN WOOD AND KARL E. PETERSON

ing that you understand how Windows
operates. Because Visual Basic hides
many of these complexities, program de-
velopment is much faster and easier. How-
ever, if you’ve been programming Win-
dows for a while, you know that with this
ease of use come some limitations. In
order to grab all the functionality that
Windows provides, it is sometimes neces-
sary to dig a little deeper into how Win-
dows works.

One example of these inner details is

The thing that makes Visual Basic
great is the fact that it allows
you to write full-fledged Win-
dows programs without requir-
echnical Publications H O M E

S U B C L A S S I N G
' Code to handle left mouse
' press

' and so on...

Case Else
' Pass unprocessed messages
' back to Windows by calling
' the DefWindowProc API
' function

WinProc = _
DefWindowProc(hWnd, _
 msg, wParam, lParam)

End Select
End Function

The first argument, hWnd, is a handle
to the window the message is directed at.
If the procedure needs to perform any
window-related tasks, it can use this
handle to identify the window. The sec-
ond argument, msg, is the actual message
being sent: this is simply one of the pre-
defined values used by Windows that in-
dicate which event has occurred. It can
also be a value defined and used inter-
nally by a particular application.

The remaining arguments are generic.
The contents of the arguments depend on
the message being sent and are used to
describe information about the event that
has occurred. Sometimes one or both of
these last two arguments are not used. All
unprocessed messages should be passed
back to Windows for default processing by
calling the DefWindowProc API function.

To provide this same functionality in
Visual Basic, a subclassing control allows
you to specify the handle of the window
you want to subclass. This is usually the
hWnd property for a form, but it can also
be the handle for a control or other win-
dow. The subclassing control also lets
you specify the messages you want to
intercept. When Windows sends the speci-
fied messages to the specified window,
the subclassing control fires the Message
event. To respond to these messages,
place your code in the Message event
handler, which looks somewhat similar
to the WinProc function.

The examples presented in this article
were written to use a subclassing control
called MsgHook. This VBX, written by
Zane Thomas, is a modified version of the
MsgHook control distributed with the
second edition of the Waite Group Press
book, Visual Basic How-To. This control
was recently rewritten to be compatible
with a new 32-bit MSGHOOK.OCX, to be
included with the book Visual Basic 4.0
How-To, also from Waite Group Press.
This means that code written to use this
control can be ported to the 32-bit world
of Visual Basic 4.0 with only minimal modi-
fication to function parameter data
types—changing Integers to Longs, gen-
©1991–1995 Fawcette Technical Publicatio
Windows
Sends Message

Subclassing VBX
Fires Message Event

Default Window
Procedure Invoked

Return
to Windows

Preprocessing
the Message

Windows
Sends Message

Default Window
Procedure Invoked

Subclassing VBX
Fires Message Event

Return
to Windows

Postprocessing
the Message

Windows
Sends Message

Subclassing VBX
Fires Message Event

Return
to Windows

Default Window
Procedure Invoked

“Eating” the
the Message

x
Three Common Controls. These diagrams show the three most common
methods subclassing controls offer for responding to window messages. A control

may insert itself so that it receives messages either before or after the default window procedure
does. It may also simply “eat” the message, never allowing it to pass through to the default
window procedure. MsgHook offers the most flexibility: you can invoke the default window
procedure at any point. This allows you to combine the first two methods, incorporating both
pre- and post-processing.

FIGURE 1
n

Displaying Information About Menu Commands in a Status Bar. As each
menu command is highlighted, Windows sends a WM_MENUSELECT message

to the window that owns the menu. Once you figure out the method Visual Basic uses to
determine menu IDs, you can have your application display a brief tip in a status bar that
corresponds to the currently selected command.

LISTING 1

Sub Form_Load ()

 ' Setup MsgHook
 MsgHook.HwndHook = Me.hWnd
 MsgHook.Message(WM_MENUSELECT) = True

 DefaultText = "Ready"
 lblStatusBar = DefaultText

End Sub

Sub MsgHook_Message (msg As Integer, wParam As Integer, _
lParam As Long,result As Long)
Dim txtStatus As String

If msg = WM_MENUSELECT Then
 Select Case wParam

Case 0
 txtStatus = DefaultText

Case 2
 txtStatus = "Exits this program"

Case 4
 txtStatus = "Cuts the selected items" & _

" to the clipboard and deletes them"
Case 5

 txtStatus = "Copies the selected " & "items to the clipboard"
Case 6

 txtStatus = "Pastes the contents of " & _
 "the clipboard to the current location"

Case 7
 txtStatus = "Deletes the selected items"

Case Else
 txtStatus = ""

 End Select
 lblStatusBar = txtStatus
 result = 0

 End If

End Sub
Visual Basic Programmer’s Journal SEPTEMBER 1995 35s H O M E

S U B C L A S S I N G
erally. You may freely distribute
MSGHOOK.VBX with any applications you
write (MSGHOOK.VBX along with the full
source code for all the examples presented
in this article plus a few more will be posted
on CompuServe in the VBPJ Forum as
SUBCLS.ZIP. We weren’t able to fit all of our
code in the listings printed here).

You should find the code easily adapt-
able to any of the other subclassing con-
trols currently available, such as
SpyWorks-VB from Desaware, or
MSGBlaster from WareWithAll Inc. (Both
Desaware and WareWithAll have demo
versions of their products in the third-
party section in the VBPJ Forum on
CompuServe.)

Such controls will use a similar syntax
for the Message event handler but may
have slightly different parameters. The
syntax for specifying which messages you
want to respond to and for specifying how
default processing is handled will prob-
ably be different.

Default processing specifies when or if
the message is sent to the original win-
dow procedure (see Figure 1). For ex-
ample, should the window process the
message before or after the Message event
is fired? Or should messages you process
not be sent to the original window proce-
dure at all? To control default processing,
MsgHook provides an InvokeWindowProc
function that you call when you want the
original window procedure to process a
message. You can simply call this func-
tion in any order you want, or not at all.
Note that this function is new, and is not
supported by the VBX that came with the
second edition of Visual Basic How- To.

1 SHOWING STATUSBAR INFORMATION
FOR MENU COMMANDS

A window receives a WM_MENUSELECT
message each time a new menu command
is highlighted. By processing this mes-
sage, you can create a status bar that
provides the user with a brief description
of menu commands as each command is
highlighted.

The WM_MENUSELECT message uses
the wParam parameter to indicate the ID
of the menu command being selected.
How do you know which ID value corre-
sponds to which menu command? A little
experimenting shows that Visual Basic
uses consecutive numbering for menu
commands starting from 1. For example,
say you have a File menu and an Edit
menu, and that each menu has five com-
mands. The ID for File will be 1, and the ID
for the File menu’s commands will be 2, 3,
4, 5, and 6. The ID for Edit will then be 7,
and the ID for the Edit commands will be
8, 9, 10, 11, and 12, and so on. If wParam is
zero, no menu command is selected and
your program should either clear the sta-
36 SEPTEMBER 1995 Visual Basic Progra
tus bar, or place some default text in the
status bar (see Listing 1). To create the
status bar, the code in Listing 1 uses a
simple label control. This allows the code
to work with both the professional and
standard editions of Visual Basic. How-
ever, the technique is easily adapted to
work with a more professional-looking
status bar if you have access to one.

2 ADDING A COMMAND TO A FORM’S
SYSTEM MENU

Using the Windows API, it is easy to add a
command to a form’s system menu or con-
trol box (see Listing 2). This can be useful
in simple applications that have only one or
two menu commands. Because Visual Ba-
sic doesn’t know about the menu command
your program added, no event handler ex-
ists to respond when the command is se-
lected. This can be solved using a
mmer’s Journal ©1991–1995 Fawcette T
subclassing control to intercept the
WM_SYSCOMMAND message.

Windows sends the WM_SYSCOMMAND
message when the user selects a command
from the system menu, or clicks on the
maximize or minimize buttons. The wParam
parameter contains an identifier that indi-
cates the requested system command.

The listings use GetSystemMenu to get a
handle to the form’s system menu and then
uses the AppendMenu API function to ap-
pend a menu separator followed by an About
command. Note that the ID assigned to the
new menu item must be less than &HF000
so that it does not conflict with any of
Windows’ system commands.

The code also invokes MsgHook’s
InvokeWindowProc method to call the
form’s original window procedure, if
WM_SYSCOMMAND was not sent in re-
sponse to the user selecting the new menu
Adding a Menu Command to a Form’s System Menu. Adding a command
to a form’s system menu is no problem with the Windows API. But having your

application respond when the command is selected requires a subclassing control to
intercept the WM_SYSCOMMAND message.

LISTING 2

Sub Form_Load ()
 Dim i As Integer
 Dim hMenu As Integer

 ' Add "About..." command to system menu
 hMenu = GetSystemMenu(Me.hWnd, False)
 i = AppendMenu(hMenu, MF_SEPARATOR, 0, 0&)
 i = AppendMenu(hMenu, MF_STRING, IDM_ABOUT, "&About...")

 ' Setup MsgHook
 MsgHook.HwndHook = Me.hWnd
 MsgHook.Message(WM_SYSCOMMAND) = True

End Sub

Sub MsgHook_Message (msg As Integer, wParam As Integer, _
 lParam As Long, result As Long)

 ' Look for WM_SYSCOMMAND message with About command
 If msg = WM_SYSCOMMAND Then

 Select Case wParam
Case IDM_ABOUT

 frmAbout.Show 1
 result = 0
 Exit Sub

 End Select
 End If

 ' Pass along to default handler if message not processed
 result = InvokeWindowProc(MsgHook.HwndHook, msg, _

 wParam, lParam)

End Sub
Left-Justifying Caption Text. By intercepting messages that force a repaint
of the nonclient areas of your form, you can create customized title bars. The

same techniques could be used to add bitmaps or even buttons to this part of the form.

FIGURE 2
echnical Publications H O M E

S U B C L A S S I N G

notify applications that their nonclient ar-
command. This allows other instances of
this message to be processed normally.
Failure to do this would effectively dis-
able all other system commands.

3 SUPPORTING DRAG-AND-DROP
FROM FILE MANAGER

Applications that process files seem not
quite as polished if they don’t accept files
dragged from File Manager or the Windows
95 Explorer shell. Adding such support to a
Visual Basic app requires modifying the
extended window attributes of your form,
notifying Windows that you wish to accept
dropped files, and finally hooking the
WM_DROPFILES message using a
subclassing control.

Visual Basic does not set the
WS_EX_ACCEPTFILES style attribute for
forms, so this must be done first. The
AcceptDrops routine called from a
Form_Load event (see Listing 3) first reads
the extended style attributes for the form,
then modifies these to include this new
setting. Calling the DragAcceptFiles API reg-
isters your form with Windows to receive
notification when files are dropped.

Within the Message event, the
DragQueryFile API is first used to establish
the number of files dropped, then to re-
trieve their file names one by one and place
them into a list box. The Message event’s
wParam parameter contains a handle that
38 SEPTEMBER 1995 Visual Basic Progr
identifies an internal data structure describ-
ing the dropped files, and is used with the
other Drag API functions. This handle is
valid only during the processing of this
message. The DragFinish API releases
memory Windows allocated for transfering
file names to the application. Because Vi-
sual Basic doesn’t normally support these
operations, there is no need to invoke the
original window procedure.
a

4 LEFT-JUSTIFYING
CAPTION TEXT

Ever feel like altering a Win-
dows standard to do it your
way? This example hooks all
the messages that cause re-
paints of nonclient areas (title
bar, menus, system icons, and
borders) to occur. Immedi-
ately after allowing the default
window processing, the title
bar portion of the nonclient
area is repainted with a cus-
tomized Windows 95-style cap-
tion (see Figure 2). You could
use the same techniques to
add to the standard caption,
perhaps with the time on the
far right, or to otherwise alter
the title bar to your taste.

The WM_NCPAINT and
WM_NCACTIVATE messages
mmer’s Journal ©1991–1995 Fawcette T
eas need to be repainted. But because this
includes other areas besides the caption,
the original window procedure must do the
bulk of the work before we step in to paint
a custom caption. By setting the form’s
Caption property to a null string, a tempo-
rary flash in the title bar is prevented as the
caption is painted centered and then re-

CONTINUED ON PAGE 43.
' *** Listing from DROPFILE.BAS ***
Sub AcceptDrops (hWnd As Integer)

Dim Style As Long
'
' Set to accept dropped files from File Manager
'
Style = GetWindowLong(hWnd, GWL_EXSTYLE)
Style = SetWindowLong(hWnd, GWL_EXSTYLE, Style _

Or WS_EX_ACCEPTFILES)
'
' Notify system we want to accept dropped files
'
DragAcceptFiles hWnd, True

End Sub

' *** Listing from DROPFILE.FRM ***
Sub Form_Load ()

'
' Prepare form to accept dropped files
'
Call AcceptDrops((Me.hWnd))
'
' Setup MsgHook control
'
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_DROPFILES) = True

End Sub

Sub MsgHook_Message (Msg As Integer, wParam As _
Integer, lParam As Long, Result As Long)
Dim nFiles As Integer
Dim Buffer As String
Dim i As Integer
Dim nRet As Integer
'
' Always test which message was recieved.

'
If Msg = WM_DROPFILES Then

'
' Set up buffer to recieve filenames, then
' retrieve number of files dropped by passing
' -1 as the file number.
'
Buffer = Space$(256)
nFiles = DragQueryFile(wParam, -1, _

Buffer, Len(Buffer))
'
' Clear list box and reset label.
'
List1.Clear
Label1 = nFiles & " File(s) Dropped:"
'
' Retrieve the name of each file dropped, and
' place in listbox.
'
For i = (nFiles - 1) To 0 Step -1

nRet = DragQueryFile(wParam, i, _
Buffer, Len(Buffer))

List1.AddItem Left(Buffer, nRet), 0
Next i
List1.ListIndex = 0
'
' Tell system we’re done. No need to invoke
' original window procedure.
'
Call DragFinish(wParam)
Result = 0

End If
End Sub

Supporting Drag-and-Drop from File Manager. The names of files dragged from File Manager and dropped on your
form can be retrieved using this code.LISTING 3
MDI Wallpaper. You can add your company’s
logo or other interesting bitmaps or patterns

to an MDI background by intercepting WM_PAINT and
WM_ERASEBKGND for the MDI client space.

FIGURE 3
echnical Publications H O M E

S U B C L A S S I N G
' *** Listing from LEFTCAP.FRM ***
' MsgHook routine which calls default window procedure
Declare Function InvokeWindowProc Lib _

"MsgHook.vbx" (ByVal hWnd As Integer, _
ByVal Msg As Integer, ByVal wParam As _
Integer, ByVal lParam As Long) As Long

' Store Caption as a string
Dim Kaption As String

Sub Form_Load ()
'
' Set Caption to "", storing whatever was
' set at design
'
Kaption = Me.Caption
Me.Caption = ""
'
' Setup MsgHook control
'
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_NCPAINT) = True
MsgHook.Message(WM_NCACTIVATE) = True
MsgHook.Message(WM_SIZE) = True

End Sub

Sub MsgHook_Message (Msg As Integer, wParam As Integer, _
 lParam As Long, Result As Long)
Static PrevState As Integer
'
' Fire default window procedure before processing
' any of the messages we’re interested in for this
' task.
'
Result = InvokeWindowProc(MsgHook.HwndHook, _

Msg, wParam, lParam)
'
' Check which message arrived, and act accordingly.
'
Select Case Msg

Case WM_NCPAINT
'
' Check whether to paint as active or inactive
'
RefreshCaption Kaption, Me, (GetActiveWindow() = _

 Me.hWnd)
Case WM_NCACTIVATE

'
' wParam indicates active or inactive
'
RefreshCaption Kaption, Me, wParam

Case WM_SIZE
'
' Supply Caption for minimized icon only
'
If wParam = SIZE_MINIMIZED Then 'Minimized

Me.Caption = Kaption
ElseIf PrevState = SIZE_MINIMIZED Then

Kaption = Me.Caption
Me.Caption = ""
RefreshCaption Kaption, Me, True

End If
'
' Store "last" WindowState
'
PrevState = Me.WindowState

End Select
End Sub

' *** Listing from LEFTCAP.FRM ***

Sub RefreshCaption (CapText$, Frm As Form, fActive%)
Dim nRet As Long
Dim wDC As Integer
Dim wr As RECT
Dim xText As Integer
Dim yText As Integer

Static xIcon As Integer
Static yIcon As Integer
Static xBorder As Integer
Static yBorder As Integer
Static BeenHere As Integer
'
' Bail out if form is minimized
'
If Frm.WindowState = SIZE_MINIMIZED Then

Exit Sub
End If
'
' Retrieve system metrics if first time here
'
If Not BeenHere Then

xIcon = GetSystemMetrics(SM_CXSIZE)
yIcon = GetSystemMetrics(SM_CYSIZE)
If Frm.BorderStyle = 1 Then 'FixedSingle

xBorder = GetSystemMetrics(SM_CXBORDER)
yBorder = GetSystemMetrics(SM_CYBORDER)

ElseIf Frm.BorderStyle = 2 Then 'Sizable
xBorder = GetSystemMetrics(SM_CXFRAME)
yBorder = GetSystemMetrics(SM_CYFRAME)

ElseIf Frm.BorderStyle = 3 Then 'FixedDouble
xBorder = GetSystemMetrics(SM_CXDLGFRAME)
yBorder = GetSystemMetrics(SM_CYDLGFRAME)

End If
BeenHere = True

End If
'
' Get device context for entire window
'
wDC = GetWindowDC(Frm.hWnd)
'
' Determine space required by text
'
nRet = GetTextExtent(wDC, CapText, Len(CapText))
xText = WordLo(nRet)
yText = WordHi(nRet)
'
' Calc rectangle to put text into
'
Call GetWindowRect(Frm.hWnd, wr)
wr.right = wr.right - wr.left - _

(xIcon * 2) - xBorder - 2
wr.left = xBorder + xIcon + 4
wr.top = yBorder + ((yIcon - yText) \ 2)
wr.bottom = yBorder + yIcon
'
' Retrieve and set colors to use for
' titlebar and text
' Set background drawing mode
'
If fActive Then

nRet = SetBkColor(wDC, _
 GetSysColor(COLOR_ACTIVECAPTION))

nRet = SetTextColor(wDC, _
 GetSysColor(COLOR_CAPTIONTEXT))

Else
nRet = SetBkColor(wDC, _

 GetSysColor(COLOR_INACTIVECAPTION))
nRet = SetTextColor(wDC, _

 GetSysColor(COLOR_INACTIVECAPTIONTEXT))
End If
'
' Draw the caption text
'
nRet = ExtTextOut(wDC, wr.left, wr.top, _

ETO_CLIPPED Or ETO_OPAQUE, wr, _
CapText, Len(CapText), ByVal 0&)

'
' Release window device context
'
nRet = ReleaseDC(Frm.hWnd, wDC)

End Sub

Left-Justifying Caption Text. The code used to modify the appearance of caption text could be altered to provide any number
of special effects. Studying the RefreshCaption routine offers an appreciation for just how much Visual Basic and Windows

do without calling attention to themselves.

LISTING 4
Visual Basic Programmer’s Journal SEPTEMBER 1995 39©1991–1995 Fawcette Technical Publications H O M E

S U B C L A S S I N G
' *** Listing from GETMINMX.FRM ***
Sub Form_Load ()

' Setup MsgHook
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_GETMINMAXINFO) = True

End Sub

Sub MsgHook_Message (msg As Integer, wParam As _
Integer, lParam As Long, result As Long)
 Dim MinMax As MINMAXINFO

 If msg = WM_GETMINMAXINFO Then

 ' Copy to our local MinMax variable

 hmemcpy MinMax, ByVal lParam, Len(MinMax)

 ' Set minimum/maximum tracking size
 MinMax.ptMinTrackSize.x = 150
 MinMax.ptMinTrackSize.y = 150
 MinMax.ptMaxTrackSize.x = 400
 MinMax.ptMaxTrackSize.y = 400

 ' Copy data back to Windows
 hmemcpy ByVal lParam, MinMax, Len(MinMax)
 result = 0

 End If

End Sub

Restricting Window Sizing. By intercepting the WM_GETMINMAXINFO message, it is possible to restrict the range that a
user can size a window. One nice thing about this approach is that it actually restricts the size of the sizing rectangle, giving

the user visual feedback about how the window can be sized as the window is being resized.

LISTING 5
Painting the Background of an MDIForm. Drawing directly on the background of an MDIForm only requires knowing that
it’s actually the first child (in a non-MDI sense) window of the form. Hooking WM_PAINT and WM_ERASEBKGND messages

for this window allows you to paint whatever pleases you; however, only GDI drawing methods are available.

LISTING 6

' *** Listing from MDIPAINT.FRM ***

Sub MDIForm_Load ()
Dim F As Form
Dim i As Integer
'
' Setup MsgHook control
'
MsgHook.HwndHook = (GetWindow(Me.hWnd, GW_CHILD))
MsgHook.Message(WM_PAINT) = True
MsgHook.Message(WM_ERASEBKGND) = True
'
' Place a few children out in the client space
'
For i = 1 To 6

Set F = New Form1
F.Caption = F.Caption & i

Next i
End Sub

Sub MsgHook_Message (Msg As Integer, wParam As _
Integer, lParam As Long, Result As Long)
Select Case Msg

Case WM_PAINT
'
' Paint a nice background, then allow default
' window procedure to run (which instructs
' icons to repaint and clears the update status).
'
mdiBitBltCentered Picture2, Me, _

 GetSysColor(COLOR_APPWORKSPACE)
Result = InvokeWindowProc(MsgHook.HwndHook, _

Msg, wParam, lParam)
Case WM_ERASEBKGND

'
' Return non-zero to indicate we do “erase”.
' No need to invoke default window procedure.
'
Result = 1

End Select
End Sub

Sub mdiBitBltCentered (Src As PictureBox, Dest _
As MDIForm, FillColor As Long)
Dim nRet As Integer
Dim dDC As Integer, dWnd As Integer, cDC As Integer
Dim sR As RECT, dR As RECT
Dim hBmp As Integer, oldBmp As Integer
Dim hBrush As Integer
Dim dX As Integer, dY As Integer
'
' Get DC to client space
'

dWnd = GetWindow(Dest.hWnd, GW_CHILD)
dDC = GetDC(dWnd)
'
' Get source and destination rectangles
'
Call GetClientRect(Src.hWnd, sR)
Call GetClientRect(dWnd, dR)
'
' Create a memory bitmap to build image in
'
cDC = CreateCompatibleDC(dDC)
hBmp = CreateCompatibleBitmap(dDC, _

dR.right, dR.bottom)
oldBmp = SelectObject(cDC, hBmp)
'
' Create new brush and paint background in memory
'
hBrush = CreateSolidBrush(FillColor)
nRet = FillRect(cDC, dR, hBrush)
'
' Calc upper-left position parameters to place image
'
dX = (dR.right - sR.right) \ 2
If dR.bottom > sR.bottom Then

dY = (dR.bottom - sR.bottom) \ 3
Else

dY = (dR.bottom - sR.bottom) \ 2
End If
'
‘ BitBlt first to memory DC,
' then from memory to screen
'
nRet = BitBlt(cDC, dX, dY, sR.right, sR.bottom, _

 Src.hDC, 0, 0, SRCCOPY)
nRet = BitBlt(dDC, 0, 0, dR.right, dR.bottom, cDC, _

 0, 0, SRCCOPY)
'
' and clean up
'
nRet = DeleteObject(hBrush)
nRet = SelectObject(cDC, oldBmp)
nRet = DeleteObject(hBmp)
nRet = DeleteDC(cDC)
nRet = ReleaseDC(dWnd, dDC)

End Sub
42 SEPTEMBER 1995 Visual Basic Programmer’s Journal ©1991–1995 Fawcette Technical Publications H O M E

S U B C L A S S I N G
painted on the left. Hooking the WM_SIZE
message allows the Caption property to be
restored whenever the form is minimized,
preventing the need to paint the icon’s
caption as well.

Within the Message event (see Listing
4), InvokeWindowProc is called immedi-
ately to allow all normal nonclient painting,
with its return value set aside in the Result
parameter for later return to Windows. A
generic RefreshCaption routine is used to
handle all the custom painting details, which
are surprisingly involved for what seems to
be such a simple process. It would be rou-
tine to replace or modify other special ef-
fects within the title bar. It’s critical with
such an event handler that it be optimized
for the quickest possible execution. Any
delays in drawing nonclient elements will
be highly apparent to your users.

5 RESTRICTING A WINDOW SIZE RANGE
Windows sends a WM_GETMIN-

MAXINFO message when a window is being
resized. By modifying the MINMAXINFO

CONTINUED FROM PAGE 38.
©1991–1995 Fawcette Technical Publication
data structure, you can restrict the size to
which the window can be sized.

While Visual Basic doesn’t support
pointers, the Windows API provides a
function called hmemcpy that can be used
to copy data from one location to an-
other. Using hmemcpy, this example cop-
ies the data from the address specified by
lParam to a Visual Basic variable of type
MINMAXINFO. Note that the code declares
two hmemcpy parameters As Any—this
provides maximum flexibility, but it also
means that Visual Basic is not able to
verify that the correct data types are sent.
Take care when incorporating hmemcpy
in your own applications.

Setting the ptMinTrackSize and
ptMaxTrackSize portions of the
MINMAXINFO data structure indicates the
minimum and maximum size, in pixels, to
which the window can be sized (see List-
ing 5). Modifying the MINMAXINFO data
not only allows you to restrict the size of
the window, but it also restricts the sizing
rectangle that appears while the user is
sizing the window.
Visual Basic Progs H O M E
6 PAINTING THE BACKGROUND OF AN
MDIFORM

Drawing directly on the background of an
MDIForm requires but one piece of secret
knowledge—that the client space is actu-
ally the first child window (in a non-MDI
sense) of the form, a handle to which may
be obtained using the GetWindow API.
MsgHook is used to hook the WM_PAINT
and WM_ERASEBKGND messages for this
window. In this manner the Message event
is transformed into the equivalent of an
MDIForm_Paint event during which you
may paint whatever pleases you (see Fig-
ure 3). However, only GDI drawing meth-
ods are available.

When the background window re-
ceives a WM_ERASEBKGND message you
must prevent the original window proce-
dure from gaining control by returning 1
to Windows as the Result parameter (see
Listing 6). Otherwise, the background
would indeed be erased, thus causing a
distracting flash before it is repainted.
When the WM_PAINT message is received,
any sort of custom routine you desire
Creating Owner-Draw Menu Commands. This code re-creates several menu commands to give them the owner-draw style.
As a result, Windows sends a WM_DRAWITEM message whenever these commands need to be painted. Steps are also taken

to make sure the menu commands have their original menu ID so that Visual Basic is still able to call the menu command event handlers.

LISTING 7

Sub Form_Load ()
 Dim hMenu As Integer
 Dim i As Integer, j As Integer
 Dim nID As Integer

 ' Get handle to "Colors" menu
 hMenu = GetMenu(Me.hWnd)
 hMenu = GetSubMenu(hMenu, 1)

 ' Modify commands to be owner-draw and to contain
 ' color info
 For i = 0 To 7

 ' Get menu ID
 j = GetMenuItemID(hMenu, i)
 ' Modify menu item (command ID is maintained)
 j = ModifyMenu(hMenu, j, MF_BYCOMMAND Or _

MF_OWNERDRAW, j, QBColor(8 + i))
 Next i

 ' Setup MsgHook
 MsgHook.HwndHook = Me.hWnd
 MsgHook.Message(WM_DRAWITEM) = True
 MsgHook.Message(WM_MEASUREITEM) = True

End Sub

Sub MsgHook_Message (msg As Integer, wParam As _
Integer, lParam As Long, result As Long)

 Dim tmp As Integer, rc As RECT
 Dim hBrush As Integer, hOldBrush As Integer
 Dim DrawInfo As DRAWITEMSTRUCT
 Dim MeasureInfo As MEASUREITEMSTRUCT

 Select Case msg

 Case WM_DRAWITEM
If wParam = 0 Then 'If sent by menu

 ' Copy DRAWINFOSTRUCT data to
 ' local variable
 Call hmemcpy(DrawInfo, ByVal lParam, _

 Len(DrawInfo))
 ' Paint area around color bar
 If DrawInfo.itemState And ODS_SELECTED Then

 hBrush = CreateSolidBrush _
(GetSysColor(COLOR_HIGHLIGHT))

 Else
 hBrush = CreateSolidBrush(GetSysColor _

(COLOR_MENU))
 End If
 rc = DrawInfo.rcItem
 tmp = FillRect(DrawInfo.hDC, rc, hBrush)
 tmp = DeleteObject(hBrush)
 ' Paint color bar
 tmp = (rc.bottom - rc.top) / 5
 Call InflateRect(rc, -tmp, -tmp)
 hBrush = CreateSolidBrush _

 (DrawInfo.itemData)
 hOldBrush = SelectObject(DrawInfo.hDC, _

 hBrush)
 tmp = Rectangle(DrawInfo.hDC, rc.left, _

 rc.top, rc.right, rc.bottom)
 tmp = SelectObject_

(DrawInfo.hDC, hOldBrush)
 tmp = DeleteObject(hBrush)

End If

 Case WM_MEASUREITEM
' Copy MEASUREITEMSTRUCT to local variable
Call hmemcpy(MeasureInfo, ByVal lParam, _

 Len(MeasureInfo))
' Tell Windows how big our
' owner-draw items are
MeasureInfo.itemWidth = 70
MeasureInfo.itemHeight = GetSystemMetrics _

 (SM_CYMENU)
' Copy MEASUREITEMSTRUCT data back to Windows
Call hmemcpy(ByVal lParam, MeasureInfo, _

 Len(MeasureInfo))

 Case Else

 End Select

End Sub
rammer’s Journal SEPTEMBER 1995 43

S U B C L A S S I N G
may be called to place graphics or text within the client space.
Follow painting with a call to InvokeWindowProc, which cleans up
a little, instructing minimized MDI children to repaint their icons
and captions as well as clearing the flag that indicates this window
is in need of update. The return value of InvokeWindowProc is
passed back in the Result parameter.

We’ve written a routine called mdiBitBltCentered, which copies
a bitmap stored in a hidden picture control to the center of the MDI
client space when called. It does this by first constructing a
memory device context in which to build up an image for the entire
window. The background is filled with the system color the user
has chosen for MDI backgrounds (called the Application Workspace
in the Control Panel), and the hidden picture control’s contents are
BitBlted to the center of this memory bitmap. Finally, the entire
memory bitmap is BitBlted to the client space of the MDI form.

7 DRAWING CUSTOM MENU COMMANDS
Windows allows applications to create owner-draw controls.

Using owner-draw controls, you can have Windows handle all the
logic it normally handles for a control, except that it doesn’t draw
the control. Instead, Windows sends a WM_DRAWITEM message
to your application when the control needs painting. This allows
you to make the control appear in any manner you prefer, without
requiring that you create the control from scratch.

Unfortunately, Visual Basic doesn’t provide direct support for
owner-draw controls. Using a subclassing control, you can inter-
cept the WM_DRAWITEM message; however, things are a little
more complicated than that. The trouble is that in order to have
Windows send the WM_DRAWITEM message, the control must be
created with the owner-draw attribute—this presents a problem,
because Visual Basic automatically creates controls.

DLLs such as Desaware’s SpyWorks-VB, and VBASM.DLL (see
Programming Techniques, VBPJ August 1995) provide tools for re-
creating a control with different attributes. Unfortunately, it is not
clear that this technique will work under future versions of Visual
Basic.

Fortunately, owner-draw menus can be created quite easily
(see Listing 7). Listing 7 demonstrates processing the
WM_DRAWITEM message by creating some owner-draw menu
commands. The code uses the ModifyMenu API function to change
several menu commands to be owner drawn. You’ll see that the
code first calls GetMenuItemID to get the original menu’s ID. The ID
is then reassigned in the call to ModifyMenu. By making sure the
46 SEPTEMBER 1995 Visual Basic Programmer’s Journal ©
same menu IDs are maintained, Visual Basic’s regular processing of
menu commands will not be affected.

Because Windows doesn’t know how much room you’ll
need to draw the item, it first sends a WM_MEASUREITEM
message to get the item’s size in pixels. The code presented
here uses the GetSystemMetrics API function to determine the
normal height of menu commands, and arbitrarily uses the
Owner-Draw Menus. A subclassing control to intercept
the WM_DRAWITEM message, sent when owner-draw

menu items need painting, allows you make commands appear in
the manner of your choice.

FIGURE 4
Sub Form_Load ()
'
' Install app in viewer chain
'
hWndNext = SetClipboardViewer(hWnd)
'
' Setup MsgHook control
'
MsgHook.HwndHook = Me.hWnd
MsgHook.Message(WM_CHANGECBCHAIN) = True
MsgHook.Message(WM_DRAWCLIPBOARD) = True
'
' Paint whatever’s currently in the clipboard
' using a custom routine written for this demo.
'
UpdateClipView

End Sub

Sub MsgHook_Message (Msg As Integer, wParam As Integer, _
 lParam As Long, Result As Long)
Dim nRet As Long
'
' Take appropriate action based on incoming message.
'
Select Case Msg

Case WM_CHANGECBCHAIN
'
' If the window being removed is the
' next window in the chain, the window
' specified by the hwndNext parameter
' becomes the next window and clipboard
' messages are passed on to it.
'
If wParam = hWndNext Then

hWndNext = WordLo(lParam)
End If

Case WM_DRAWCLIPBOARD
'
' Contents of clipboard have changed.
' Call routine to read.
'
UpdateClipView

End Select
'
' Each window that receives either of these
' messages should call the SendMessage
' function to pass the message on to the
' next window in the clipboard-viewer chain.
'
nRet = SendMessage(hWndNext, _

WM_CHANGECBCHAIN, wParam, lParam)
Result = 0

End Sub

Sub Form_Unload (Cancel As Integer)
Dim nRet As Integer
'
' Remove Me from the clipboard viewer chain.
' DO NOT stop execution from VB menu or toolbar!
'
nRet = ChangeClipboardChain(Me.hWnd, hWndNext)

End Sub

Hooking Into the Clipboard Viewer Chain. Here,
MsgHook is used to receive notification whenever the

contents of the clipboard change. There are a number of
responsibilities that go along with becoming a clipboard viewer
app, including notifying the next app in the chain of all changes,
and properly removing yourself upon termination.

LISTING 8
1991–1995 Fawcette Technical Publications H O M E

48 SEPTEMBER 1995 Visual Basic Programmer’s Journal

S U B C L A

value of 70 for the width (see Figure 4).

8 HOOKING INTO THE CLIPBOARD VIEWER CHAIN
Changes to the Windows clipboard are passed along a chain,

or list, of applications that install themselves as clipboard viewers.
Simply calling the SetClipboardViewer API inserts your form at the
head of the list, and returns the handle of the next window in the
chain. It is your responsibility to notify this window whenever the
clipboard contents change. Due to this arrangement, when your
application is about to end you must remove yourself from the
chain to prevent wild pointers to your form’s old handle.

After becoming part of the chain, use MsgHook to receive the
WM_DRAWCLIPBOARD message (see Listing 8), which is sent to
the first window in the viewer chain whenever the clipboard
contents change. Each application in the chain can use this mes-
sage as a signal to retrieve the new contents of the clipboard.

Occasionally, another application will either install or remove
itself from the viewer chain, and you’ll receive the
WM_CHANGECBCHAIN message. If this window is the one you
were to notify of changes, the handle for the next one following it
in the chain is in the low word of lParam parameter. When either of
these messages is received, you need to pass them on along the
chain after processing.

Normally, a clipboard viewer app would respond to the
WM_DESTROY message by removing itself from the chain. How-
ever, due to the nature of Visual Basic subclassing controls, this
message is not typically interceptable. Luckily, the Form_Unload
event is available as an alternative. Due to this slight kludge, it’s
important that while testing your application, you do not stop
execution from Visual Basic’s toolbar. Instead, do it in a manner
that ensures the Form_Unload event will occur. ■

©

S S I N G

User Tip

ROUND NUMBERS
AUTOMATICALLY

This simple function automates the task of rounding
numbers:

Function Round (aNumber As Variant, DecimalPlaces%) _
As Variant

'Use DecimalPlaces=0 to round to an integer
Dim Temp As Double, DecShift As Long
Temp = CDbl(aNumber)
DecShxift = 10 ^ DecimalPlaces
Round = (Fix((Temp + .5 / DecShift) * DecShift)) /

DecShift
End Function

—Gary Baren, received by CompuServe

SEND YOUR TIP
If it’s cool and we publish it, we’ll pay you $25. If it includes code,
limit code length to 10 lines if possible. Be sure to include a clear
explanation of what it does and why it is useful. Send to
74774.305@compuserve.com or Fawcette Technical Publications,
209 Hamilton Ave, Palo Alto, CA, USA, 94301-2500.

1991–1995 Fawcette Technical Publications H O M E

	Subclass Your Way Around VB's Limitations
	Source Code

