
128 AUGUST 1998 Visual Basic Programmer’s

E X P E R T

BLACK BELT PROGRAMMING

Share Data Between
Object Instances

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the VBPJ Technical
Review and Editorial Advisory Boards. Based
in Vancouver, Washington, he’s also an in-
dependent programming consultant special-
izing in ActiveX controls and contributes to
various journals. Karl coauthored Visual
Basic 4 How-To from Waite Group Press.
Online, he’s a Microsoft MVP, and a section
leader in several VBPJ online forums.
Find more of Karl’s VB samples at
http://www.mvps.org/vb.

b y K a r l E . P e t e r s o n

Compare the costs and

benefits of three ways

object instances can

share data and events

with one another.
Click & Retrieve

Source

CODE!
data and events freely with those other instances.
Notwithstanding a previous Black Belt Programming column [“Override ActiveX

Controls,” VBPJ December 1997], you can share data among multiple instances of a Visual
Basic-authored UserControl. By adding a standard code module to a UserControl project
and declaring Public variables (standard, object, collection, whatever) within it, you give
all control instances within the current application access to this global data. And if you
ratchet up that strategy a notch, a code module can wrap access to its own private data
through various subroutines and functions that massage the data before exposing it to
control instances. I’ll show you several methods for doing just that.

Imagine a scenario where all control instances require notification in response to
an external cue. For example, I found myself needing such notification in a digital-clock
control I wrote. True to form, the colons between the hours, minutes, and seconds
blinked on the half-second. But then one user pointed out that when she placed several
instances on a form, each instance blinked out of sync with the rest.

Originally, I’d placed an intrinsic Timer control on the UserControl, updating each
clock’s display based on the Timer events of its own timer. But to solve my problem,
I had to set up a system timer callback, notifying each control instance when this single
timer fired. This concept might apply to other situations as well, including a variety of
system hooks to notify you of “events” such as keystrokes, mouse movements, file
system changes, or display property changes. Or perhaps you have objects within
your application, which provide similar notifications that need to propagate to a
variety of controls.

At any rate, remember that the “problem” here is not the issue; it just provides an
excuse to try various techniques. What’s interesting is comparing the potential

bject purists might claim that one control or class instance shouldn’t need to
know about others or share global data. However, I’ve found that objects often
need to know about other instances of themselves, as well as be able to share
Task/Issue Event-Driven Event-Driven Callback
(Form) (Class)

Cost/Benefit of Each Approach. You can use any of three methods of
notifying multiple objects of singular events. Each method has its strengths and

weaknesses. Event-driven notifications are the easiest to implement, and can be fairly
flexible if done with a class. But for the ultimate in speed and flexibility (though you must
accept some responsibility for safe-coding), you can’t beat the callback approach.

TABLE 1

Blocked in IDE by MsgBox Yes Yes No

Blocked in EXE/OCX/DLL by MsgBox No No No

Available through Remote OLE No No Yes

Complexity Minimal A little more Considerably
more

Problem potential/Severity None Medium Medium

Extensibility/Adaptability Limited to Unlimited Unlimited
available controls

Efficiency/Speed Lowest Marginally higher Highest
 Journal http://www.devx.com

BLACK BELT PROGRAMMING

E X P E R T
solutions, while remembering that the
problem will vary from project to project.
I’ll present three workable solutions for
this issue, ranging from simple but inflex-
ible to robust but complex (see Table 1).
The strategies don’t change much,
whether you’re developing a UserControl,
class, form, or UserDocument. However,
UserControls do present some odd re-
quirements, because they run in both
design and run time, so I’ll focus on them.

ADD A SHARED EVENT SINK
To notify a group of objects when some-
thing happens, the simplest strategy is to
add a shared event sink, which in turn
raises the event to all concerned objects.
In the case of a timer, you can do this by
adding a form to the project, placing a
timer on it, and referencing the global
instance of the form provided by VB from
within each object.

For example, on a form “FSharedTimer,”
add an intrinsic Timer control and set its
Interval appropriately. Within the form’s
Timer1_Timer event, raise your own Timer
event. In your control or class objects, de-
clare a reference to the global instance of
the form using WithEvents, and sink the
events as they’re raised (download Listing
A from the free, Registered Level of The
Development Exchange).

In this and the following examples, your
http://www.devx.com
object uses the tmr_Timer event proce-
dure to react appropriately to the external
notification. In this example, I simply re-
fresh the display. Before the notification
event is fired, a static Boolean flag variable
(stored in the event generator) is toggled to
indicate what state should be used during
the next display update.

The simplicity of the shared-form ap-
proach is its greatest strength, but it solves
only this particular problem. You can’t
modify the technique easily to notify your
objects of other system events or call-
backs. The next step up in complexity is
declaring a global instance of a class, rather
than a form, that fires notification events.

Of course, to take a class approach,
you need to employ a system timer call-
back instead of an intrinsic timer control.
With complexity comes flexibility—this
approach lends itself to alteration for
other sorts of system callbacks. Start by
adding two modules—one class and one
standard—to the control project. Define
the class, CSharedTimer, with Instancing
set to Private, making it invisible outside
the control/library.

Within the standard module, place the
TimerProc callback procedure that the
system will call on each timer event, along
with a global declaration of a CSharedTimer
class object. The CSharedTimer class starts
a system timer on Initialize, kills it on
Visual Bas
Terminate, and provides a Public method
called RaiseEvents. On each system call
into TimerProc, RaiseEvents is called and
the Timer event fires.

The strategy within each control ob-
ject hardly varies from the shared-form
example. The only real difference is that
during the ReadProperties event, rather
than loading the form the class is initial-
ized (see Listing 1).

You now have a fairly robust, flexible
approach to sharing events among object
instances. You can extend this class-based
method to most any sort of system notifi-
cation. And it doesn’t take much more
code added than the form-based method.
However, you can’t use events through
remote OLE; being inherently late-bound,
they’re not the fastest method of notifica-
tion; and they’re blocked by MsgBox calls
while running within the IDE. Though
annoying, you can work around that last
problem by calling the MessageBox API
directly. And it doesn’t affect the com-
piled app.

REGISTER FOR CALLBACKS
Still, for the most robust strategy, you’ll
build a collection of objects and iterate
on cue. In a standard module, write a
RegisterInstance routine that’s called as
each object is initialized. As with the
prior examples, make this call in the
' ****************************
' Code within CSharedTimer
' ****************************
Private m_ShowColons As Boolean
Private m_TmrID As Long
Private Const tmrDelay = 500
Public Event Timer(ByVal ShowColons As Boolean)
Private Sub Class_Initialize()
' Start timer
m_TmrID = SetTimer(0&, 0&, tmrDelay, AddressOf _

TimerProc)
End Sub
Private Sub Class_Terminate()
' Kill timer
Call KillTimer(0&, m_TmrID)

End Sub
Public Sub RaiseEvents()
m_ShowColons = Not m_ShowColons
RaiseEvent Timer(m_ShowColons)

End Sub
' ****************************
' Code within MSharedTimer
' ****************************
Public g_TimerEvents As CSharedTimer
Public Sub TimerProc(ByVal hWnd As Long, ByVal uMsg As _
Long, ByVal idEvent As Long, ByVal dwTime As Long)
Static Busy As Boolean
' Make sure we're not re-entering here.
If Not Busy Then
' Tell global event generator to fire

Busy = True
g_TimerEvents.RaiseEvents
Busy = False

End If
End Sub
' ****************************
' Code within UserControl
' ****************************
Private WithEvents tmr As CSharedTimer
Private Sub UserControl_ReadProperties(PropBag As _
PropertyBag)
' Grab reference to global timer events, making
' sure that object is first initialized.
If Ambient.UserMode Then

If g_TimerEvents Is Nothing Then
Set g_TimerEvents = New CSharedTimer

End If
Set tmr = g_TimerEvents

End If
End Sub
Private Sub tmr_Timer(ByVal ShowColons As Boolean)
If m_Enabled Then

Call Me.Refresh(ShowColons)
End If

End Sub
Share a Class’s Timer Events. You may share a global class, which raises timer events generated in response to a system
timer callback. You could use this approach with virtually any sort of system callback, message, or other event that all object

instances must be informed of. Unlike the simpler form-based approach, the first control/object that needs the class must specifically
instantiate it.

LISTING 1
ic Programmer’s Journal AUGUST 1998 129

E X P E R T

BLACK BELT PROGRAMMING
ReadProperties event of UserControls
and in the Initialize event of other ob-
jects. In controls, you may query the
Ambient.UserMode property to deter-
mine whether or not to enable notifica-
tion events. Note that this property tosses
an error during an Initialize event, as the
control isn’t sited yet. Passing Me to
RegisterInstance lets you add a refer-
ence to the new instance to a collection
(see Listing 2).

RegisterInstance first ensures that the
private collection has been initialized by
setting it to a New Collection if it’s cur-
rently Nothing. Then a pointer to the
passed object is stored within the collec-
tion. Storing an actual object reference
sets up a circular death trap—easily
avoided with the pointer (see “Referring
to Parent Properties” in Ask the VB Pro,
VBPJ May 1998). For the final step in the
registration, initiate the external stimu-
lus you’ll be reacting to by setting up a
system timer callback.

Again, UserControls might require ex-
tra handling. System events firing into a
130 AUGUST 1998 Visual Basic Programmer’s
control when it’s running at design time
might not always be desirable. Exposing
a Friend property (invisible to the out-
side world) of the control allows the
registration routine to determine in
which run mode the control is currently
operating:

Friend Property Get AmbientUserMode() _
As Boolean
AmbientUserMode = Ambient.UserMode

End Property

As controls come, they also go. So you
need to write a corresponding UnRegister-
Instance routine that reverses the registra-
tion process (see Listing 3). The Terminate
event of your object typically passes this
routine a reference to Me. Terminate begins
by removing the pointer to your object from
the collection of objects. If the count has
fallen to zero, that provides the signal that
the last instance being tracked has termi-
nated and it’s time to shut down (or stop
responding to) the external stimulus. With a
timer, just kill it.

CALL ALL YOUR OBJECTS
As the system timer callbacks start flood-
ing in, the TimerProc routine simply iter-
ates the collection, firing off a method call
to each stored object (see Listing 4). As
each object pointer is retrieved from the
collection, you convert it to an object
reference with an easy (albeit sleazy) hack:
 Journal
Declare a variable of the desired object
type, but never instantiate it within the
procedure.

Copying the stored pointers to this
early-bound object variable provides a
tidy way to hijack a reference to the origi-
nal object. But be sure not to let this affect
the object’s reference count; letting the
stolen reference go out of scope or setting
it to Nothing will destroy the original!
Manually dereference the borrowed ref-
erence with a second memory copy after
you’ve finished using it—or else.

In the first two event-driven methods, I
use an event procedure to accept notifica-
tion. But this third callback method requires
exposing a Friend procedure in the
UserControl (or class):

Friend Sub Timer(ByVal ShowColons As _
Boolean)
Me.Refresh ShowColons

End Sub

If your object notifications need to
stop and start at will, a few steps are
required with any of my three approaches.
A control might expose an Enabled prop-
erty that the user could toggle at any
point. In that case, rather than automati-
cally register the control at instantiation,
you’d only register the control if its En-
Private m_Cntls As Collection
Private m_TmrID As Long

Private Const tmrDelay = 500
' Public Sub RegisterInstance(obj
' As ISharedTimer)
Public Sub RegisterInstance(obj _
As Clock)
' Make sure collection is
' initialized.
If m_Cntls Is Nothing Then

Set m_Cntls = New Collection
End If
' Add control pointer to
' collection.
m_Cntls.Add ObjPtr(obj), _

Hex(ObjPtr(obj))
' If this is the first registered
' control, and we're not in the
' IDE, start the timer.
If m_Cntls.Count = 1 Then

If obj.AmbientUserMode Then
' Set new timer using
' values set in module
' constants.
m_TmrID = SetTimer(0&, 0&, _

tmrDelay, AddressOf _
TimerProc)

End If
End If

End Sub

Register Each New Instance of
Your Objects. This routine adds

new objects to a collection as they register
themselves. Use the collection to store
references to all objects wishing to be notified
of specific events. If a trigger needs to be set
for when events start occurring, such as setting
up a system timer callback, do that when the
collection count is equal to 1.

LISTING 2
' Public Sub
' UnRegisterInstance(obj As
' ISharedTimer)
Public Sub UnRegisterInstance(obj _
As Clock)
' Remove control pointer from
' collection.
On Error Resume Next

m_Cntls.Remove _
Hex(ObjPtr(obj))

On Error GoTo 0
' Kill timer if this is the last
' control.
If m_Cntls.Count = 0 Then

If m_TmrID Then
Call KillTimer(0&, m_TmrID)
m_TmrID = 0

End If
End If

End Sub

Make Sure Terminating
Objects Unregister. Use this

routine to remove objects from the
notification collection. This step is critical
to avoid horrid debugging chores and even
system crashes. When the collection count
decreases to 0, use that as the trigger to turn
off external notifications, such as killing a
system timer.

LISTING 3
Private Sub TimerProc(ByVal hWnd _
As Long, ByVal uMsg As _
Long, ByVal idEvent As Long, _
ByVal dwTime As Long)
' Dim Cntl As ISharedTimer
Dim Cntl As Clock
Dim lpObj As Variant
Static ShowColons As Boolean
' Toggle global colon visibility.
ShowColons = Not ShowColons
' Loop through control pointer
' collection, firing Timer method
' in each instance.
For Each lpObj In m_Cntls

CopyMem Cntl, CLng(lpObj), 4
Cntl.Timer ShowColons

Next lpObj
CopyMem Cntl, 0&, 4

End Sub

Notify Everyone. As the events
of interest occur, you simply

iterate through the collection, calling either
Friend or implemented methods within each
object. Because pointers to the objects,
rather than actual object references, are
stored within the collection, this routine
steals a quick reference by copying the
pointer into an uninitialized object variable
of the same type. If you don’t manually
delete this reference with a second call to
CopyMem, very bad things will happen.

LISTING 4
http://www.devx.com

BLACK BELT PROGRAMMING

E X P E R T

Code Online
You can find all the code published in this issue of VBPJ on The Development
Exchange (DevX) at http://www.vbpj.com. For details, please see “Get Extra
Code in DevX’s Premier Club” in Letters to the Editor.

Share Data Between Object Instances
Locator+ Codes
Listings for the entire issue, including a routine that adds new objects to a
collection as they register themselves (free Registered Level): VBPJ0898

 Listings for this article only, including the routine listed above, plus three
fully functional control project groups, each demonstrating one of the
methods discussed in the column (subscriber Premier Level): BB0898
abled property were set to True. Likewise, at termination, you’d
only unregister if Enabled were True. Within the Let Enabled
property procedure, add additional code to register or unregister
as appropriate:

Public Property Let Enabled(ByVal NewVal As Boolean)
If NewVal <> m_Enabled Then

m_Enabled = NewVal
PropertyChanged "Enabled"
If m_Enabled Then

Call RegisterInstance(Me)
Else

Call UnRegisterInstance(Me)
End If

End If
End Property

With the callback registration scheme, you have to keep track
of your current state at all times. If it gets out of sync and tries to
reregister an already registered instance, you’ll experience minor
annoyance in debugging at the very least; or the system could tank
if unanticipated events continue to stream into your module after
the objects are all gone. As your design complexity increases,
consider more rigorous error-checking in the registration routines.

NOTIFY AN INTERFACE
So far I’ve only talked about notifying a specific interface—that
of a known object. But what if you have multiple objects of
different types, each needing to be notified of these events? The
event-driven models handle that requirement easily, but would
the callback model make you code multiple collections and
iterate each?

Here’s a perfect situation for Implements to come to your
rescue. You can create a notification interface that each of your
varying objects will implement. In the case of my clock example,
the ISharedTimer class would look like this:

Option Explicit
Public Function AmbientUserMode() As Boolean
End Function
Public Sub Timer(ByVal ShowColons As Boolean)
End Sub

You can then add another UserControl to your project;
perhaps one that counts down rather than up, placing this code
in both modules:

Implements ISharedTimer
Private Function _

ISharedTimer_AmbientUserMode() As Boolean
ISharedTimer_AmbientUserMode = Ambient.UserMode

End Function
Private Sub ISharedTimer_Timer(ByVal ShowColons As Boolean)

Me.Refresh ShowColons
End Sub

You need small modifications to the registration and
TimerProc routines, replacing all references to the primary
interface (Clock) with references to the common secondary
interface (ISharedTimer). This highlights one of the cool things
about secondary interfaces: You can still pass a reference to Me
when the parameter is As IWhatever. The received reference
will be queried to ensure the proper interface is implemented.

You might not think you’d have multiple controls within the
same project, all needing simultaneous notice of a singular
http://www.devx.com
event. But remember, these techniques work with all object
types. It might be much more likely for you to have several
classes, all needing to be notified when your Internet connec-
tion dies, or your server crashes, or any number of other things.
By implementing a common interface and properly registering
each instance, you can notify all with one simple loop, whenever
the need arises.

Of the three methods, I think callbacks offer the most ben-
efits, but also require the most diligence to code. Note you can
only use the callback method through Remote OLE. Making
callbacks into your objects always provides more speed than
raising events, making this solution more suitable to time-
critical code. Last but least, callbacks are never blocked by a
MsgBox.
Visual Basic Programmer’s Journal AUGUST 1998 131

	Code

