
90

INTERMEDIATE
ASK THE VB PRO

Call the
Right Function

by Karl E. Peterson

VB4/32, V

Click & Retrieve
Source

CODE!

Dealing with Versionitis
As time goes on, the capabilities of the machines

my applications run on become harder to predict. I’d
like to take advantage of new functions offered by the
DLLs that ship with Internet Explorer and other
Windows updates, but I can do that only if my user
has installed the required packages. I’ve seen folks
error-trap DLL calls when it’s questionable whether
the correct DLL version will exist on the user’s
machine. Is there a way that’s more robust and
generic than error trapping to determine whether I
can safely make the enhanced calls, or whether “grace-
ful degradation” is the better strategy?

Yes, there is a better way. Two API functions,
rarely useful to VB programmers, come in handy

here. Languages that support true function pointers
can load a library, retrieve the address of the desired
function, then invoke it by address. Although in VB
we’re left wanting at the critical third step, the first
two steps tell you all you need to know.

A

Q

B5, VB6 Determine Function Availability at Run Time
Use the LoadLibrary API to map a DLL into your
process’s address space. Then call GetProcAddress,
passing the name of the desired routine, to obtain a
pointer to that function. If GetProcAddress succeeds,
then you know the function is exported and callable
from VB (see Listing 1). Don’t worry about including
Declare statements for API functions that might not
be exported, because these functions alone won’t
generate errors. VB objects only when you attempt to
call a nonexistent function.

Interestingly, you’ll find that a great many of the
common DLLs are already mapped into your
process’s address space. For this reason, it’s not a bad
idea to first call GetModuleHandle on the desired
library. If this call succeeds, you don’t have to make
the LoadLibrary call. If GetModuleHandle fails,
and you do call LoadLibrary, make sure you call
FreeLibrary after determining whether the function
you’re interested in is exported. If the function
you’re testing is one that will be called many times,
it makes sense to test only once whether it’s avail-
able, and set a flag accordingly.
Option Explicit

Private Declare Function GetModuleHandle Lib _
"kernel32" Alias "GetModuleHandleA" (_
ByVal lpModuleName As String) As Long

Private Declare Function LoadLibrary Lib _
"kernel32" Alias "LoadLibraryA" (_
ByVal lpLibFileName As String) As Long

Private Declare Function GetProcAddress Lib _
"kernel32" (ByVal hModule As Long, _
ByVal lpProcName As String) As Long

Private Declare Function FreeLibrary Lib _
"kernel32" (ByVal hLibModule As Long) As Long

Public Function Exported(ByVal ModuleName As _
String, ByVal ProcName As String) As Boolean
Dim hModule As Long
Dim lpProc As Long
Dim FreeLib As Boolean
' check first to see if the module is already
' mapped into this process.
hModule = GetModuleHandle(ModuleName)
If hModule = 0 Then

' need to load module into this process.
hModule = LoadLibrary(ModuleName)
FreeLib = True

End If

' if the module is mapped, check procedure
' address to verify it's exported.
If hModule Then

lpProc = GetProcAddress(hModule, ProcName)
Exported = (lpProc <> 0)

End If

' unload library if we loaded it here.
If FreeLib Then Call FreeLibrary(hModule)

End Function
Listing 1 As DLLs are upgraded, new functions are often added. Using this routine, you can quickly determine whether
any given function is exported from the DLL found on the machine where your application is running. This strategy is much
easier than comparing the DLL’s version against known function lists.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ SEPTEMBER 1999

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or
access a comprehensive
database of previously
answered questions.

ABOUT THIS COLUMN

VB4/32, VB5, VB6 Accurately Determine Available Space on Large Drives
Free Disk Space on Large
Drives

I have an older, VB4-era app that uses SetupKit.dll to
determine a disk’s free space. Now I notice VB6 no
longer includes that DLL, and the function that the
new setup kit supplies uses a native Win32 API call
that fails with an overflow on some, but not all, hard
drives. This call works fine on my 4 GB drive, but
bombs on my 8 GB drive. I checked the data types
and they appear correct. Any ideas?

It looks like Microsoft needs to update its setup
kit code. It’s using the GetDiskFreeSpace API,

which was never intended to cope reliably with drives
larger than 2 GB. Windows NT4 (and Win95/
OSR2) introduced the GetDiskFreeSpaceEx API,
and this function is what you need to use for larger
drives. This is the perfect opportunity to use the
export test function discussed in the previous answer,
because GetDiskFreeSpaceEx isn’t available if your
application is running on the original Win95 (see
Listing 2).

It’s interesting that you mention data types in
your question. Today’s large hard-drive capacities
can definitely overflow VB’s signed Long data type. I
chose to write the GetDriveFreeSpace function to
return a Variant, the only option allowed to take
advantage of the Decimal data type. With 28 deci-
mals of precision, the Decimal data type ought to last

Q

A

VBPJ SEPTEMBER 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
Q

A

at least a few years. GetDiskFreeSpaceEx requires
pointers to 8-byte variables for several of its param-
eters. VB’s Currency data type works here, but re-
member to scale the return value up by 10,000.

Another interesting twist offered by Get-
DiskFreeSpaceEx is that the enhanced function re-
turns both total free space and available free space.
The difference is that Windows 2000, when released,
will support user-based disk quotas. Never assume
you have access to all the free space on a drive—it’s
time to start checking only for what the current user
has been allocated.

Display Full-Length Drop-Down
Is there any way to create a ComboBox using the

Dropdown List style, which displays all its items in
the drop-down without a scrollbar? I’m thinking of
something similar to the Months combo in the Win-
dows Calendar applet.

Yes, but Windows makes it harder than it really
should be. The ComboBox’s drop-down listbox

is by necessity parented to the desktop window; if it
weren’t, it wouldn’t be able to extend beyond the
edges of your form. This makes obtaining the list’s
window handle extremely difficult, especially given
that no version of Windows prior to Windows 2000
provided a way to directly uncover the linkage
between the list and its associated combo.
' used to determine drive free space.
Private Declare Function GetDiskFreeSpace Lib _

"kernel32" Alias "GetDiskFreeSpaceA" (_
ByVal lpRootPathName As String, _
lpSectorsPerCluster As Long, _
lpBytesPerSector As Long, _
lpNumberOfFreeClusters As Long, _
lpTotalNumberOfClusters As Long) As Long

Private Declare Function GetDiskFreeSpaceEx Lib _
"kernel32" Alias "GetDiskFreeSpaceExA" (_
ByVal lpRootPathName As String, _
lpFreeBytesAvailableToCaller As Currency, _
lpTotalNumberOfBytes As Currency, _
lpTotalNumberOfFreeBytes As Currency) As Long

Public Function GetDriveFreeSpace(Optional ByVal _
Drive As String = "") As Variant
' use current drive if not specified
If Drive = "" Then Drive = CurDir$

' default to zero in case drive is
' empty/nonexistent
GetDriveFreeSpace = CDec(0)

' check if enhanced function is available.
If Exported("kernel32", _
"GetDiskFreeSpaceExA") Then
Dim cAvail As Currency
Dim cTotal As Currency
Dim cFree As Currency
' return available bytes, as that's more
' important to know than total free bytes
' if they differ.
If GetDiskFreeSpaceEx(Drive, cAvail, _

cTotal, cFree) Then
GetDriveFreeSpace = CDec(cAvail * 10000)

End If

Else ' enhanced function not exported.
Dim nSecPerClus As Long
Dim nBytPerSec As Long
Dim nFreeClus As Long
Dim nTotalClus As Long
' do the math to return total free bytes.
If GetDiskFreeSpace(Drive, nSecPerClus, _

nBytPerSec, nFreeClus, nTotalClus) Then
GetDriveFreeSpace = CDec(nSecPerClus * _

nBytPerSec * nFreeClus)
End If

End If
End Function
Listing 2 Microsoft did not offer a reliable API for obtaining available free space on drives larger than 2 GB until Win95/
OSR2 and NT4. When you need this value, check whether GetDiskFreeSpaceEx is exported from kernel32.dll, and call
it if it’s available. To degrade gracefully, be prepared to call the original GetDiskFreeSpace if the enhanced function hasn’t
been exported.
91

INT
ERMEDIATE
ASK THE VB PRO

Why am I going on about this particu-
lar difficulty? You must obtain the list’s
window handle to resize it by calling the
MoveWindow API. When you subclass
the combo, one particular message reveals
the hWnd for the list. Hook into the
combo’s message stream, and watch for
WM_CTLCOLORLISTBOX. The
lParam parameter of this message is the
handle you need.

When you receive the WM_
CTLCOLORLISTBOX message, use
lParam to obtain the coordinates of the
list with GetWindowRect, the number
of items in the list with SendMes-
sage(LB_GETCOUNT), and the height
of each item with SendMessage(LB_
GETITEMHEIGHT). Calculate a new
height by multiplying the number of
items by each item’s height, and adding
the width of the borders.

The last consideration is the position
of the combo itself, because if it’s posi-
tioned low on the screen, the enlarged
list might drop off the screen bottom.
Another call to GetWindowRect retrieves

92
DOWNLOAD FREE CODE

Download the code for this issue of VBPJ
free from www.vbpj.com, part of the DevX
family of Web sites (www.devx.com).

To get the free code for this entire issue,
click on Locator+, the right-most option on
the menu bar at the top of the home page,
and type VBPJ0999 into the box. (You first
need to register, for free, on DevX.) The
free code for this article includes all code
listings, plus the CFullDrop class and
MHookMe module used to alter the size of
a combo drop-down, and drop-in code mod-
ules containing the Exported and Get-
DriveFreeSpace functions shown in List-
ings 1 and 2.

 To get the bonus code for this article,
available to DevX Premier Club members,
type VBPJ0999AP into the Locator+ field.
The bonus code includes all the free code
described above, plus a project that pro-
vides a wide array of information (including
available, free, and total space; volume
name; serial number; the file system in use;
and compression information) about any
chosen drive via a CDriveInfo class.

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency
and serves as a member of the Visual
Basic Programmer’s Journal Technical
Review and Editorial Advisory Boards.
Online, he’s a Microsoft MVP and a
section leader on several VBPJ forums.
Find more of Karl’s VB samples at
www.mvps.org/vb.

the needed coordinates, to which the
new height is added, and you can make a
comparison against the screen height.
Adjust the desired Top coordinate as
needed. Finish by calling MoveWindow
to reposition the list, and invoking the
default window procedure to allow for
default processing.

The example I wrote uses native
subclassing in VB5, but you can easily
alter the code to work with any subclassing
control (download Listing 3 and a com-
plete example from the VBPJ Web site;
see the Download Free Code box for
details). VBPJ

About the Author

www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ SEPTEMBER 1999

	Code

