
INTERMEDIATE
ASK THE VB PRO

Use Smart
Text Tricks

by Karl E. Peterson

Click & Retrieve
Source

CODE!
Employ Custom
Symbology in a Grid

I use a mapping package that employs characters
from symbol-type fonts to display the position of
point objects on maps. I want to write a VB program
that can use a grid as the map legend, showing the
object names together with their associated map
symbols. I’ll need to replicate the various options that
the mapping package offers such as color, borders,
and drop shadows for each point symbol. Even if I
could do that, it seems that changing the font for the
MSFlexGrid control is an all-or-nothing proposi-
tion. How can I apply these special effects to a symbol
font character in one column, while using standard
text in another?

You’re right about the MSFlexGrid control; it
applies font assignments to the entire grid. The

trick is to create a graphic containing the rendered
point symbol, and assign this graphic to the CellPicture

A

Q

VBPJ JULY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

• “SAMPLE: How to Use
Paths to Create Text
Effects,” Microsoft
Knowledge Base Article
ID: Q128091

RESOURCES

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or
access a comprehensive
database of previously
answered questions.

ABOUT THIS COLUMN
property of the grid control. The easiest way to do
that is to add a hidden PictureBox control to your
form, set its AutoRedraw property to True, draw the
graphic on this PictureBox control, and assign the
picture’s Image property to the grid’s CellPicture
property.

Rendering the graphic is a bit more of a challenge.
Graphics Device Interface (GDI) paths are the an-
swer. I’ve written a little class, CTextOutline, that
encapsulates the process (see Listing 1 and Figure 1).
CTextOutline exposes properties indicating whether
the text should be filled or outlined, and optionally,
whether the outline should fall behind the fill. In
addition, CTextOutline exposes a device context
handle (hDC) to use with the drawing functions. It’s
up to you to assign the desired GDI objects to the
PictureBox, using its DrawWidth, FillColor, FillStyle,
and ForeColor properties (see Listing 2).

Once you properly set up the picture box, call the
DrawText method of CTextOutline, passing the
string to render and the coordinates at which to start.
DrawText starts by using SetBkMode to set the DC’s
background mode to transparent, storing the previ-
ous value so it can be restored later. Set the back-
ground to opaque instead if you prefer an inverse
rendering.

The next operation is the heart of the solution.
GDI supports path objects, which you can build
using a variety of GDI calls. To create a path, call
BeginPath, followed by the instructions needed to
define the path, and finish with a call to EndPath.
Use the GDI function TextOut to define your path
as the outline of the passed string. To finish the
rendering, call one or more of these GDI functions
based on the property settings of the class: StrokePath,
FillPath, or StrokeAndFillPath.

You can find an example project that uses the
CTextOutline class on DevX (see the Download Free
Code box for details).

Force a Fixed-Pitch Font
I’m writing an MDI application to act as an

editor for a language I use. I would like the font to be
a fixed type as in Notepad or the code editor in VB5.

Q

Figure 1 Use Special Symbol Effects in a
Grid. This sample project uses the CTextOutline
class to render symbols onto a hidden Picture control,
which is then assigned to the CellPicture property of
the grid. You can achieve a wide array of effects
through creative use of color, outline, fill, and multiple
overlays.
87

INTERMEDIATE
ASK THE VB PRO
How do I set the font to be fixed-pitch?

You could go about this in one of several ways. If you’d like to
offer the user a choice of what font to work with, you can apply

the cdlCFFixedPitchOnly flag to the common dialog’s Flag property:

A

88

VB4/32, VB5, VB6 Text Needn’t Be Boring
Private Sub GetFont(txt As TextBox)

With CommonDialog1

.CancelError = True

.Flags = cdlCFScreenFonts Or cdlCFFixedPitchOnly _

Or cdlCFForceFontExist
Option Explicit

Private Declare Function BeginPath Lib "gdi32" _
(ByVal hDC As Long) As Long

Private Declare Function EndPath Lib "gdi32" _
(ByVal hDC As Long) As Long

Private Declare Function TextOut Lib "gdi32" _
Alias "TextOutA" (ByVal hDC As Long, ByVal X _
As Long, ByVal Y As Long, ByVal lpString _
As String, ByVal nCount As Long) As Long

Private Declare Function StrokeAndFillPath Lib _
"gdi32" (ByVal hDC As Long) As Long

Private Declare Function StrokePath Lib "gdi32" _
(ByVal hDC As Long) As Long

Private Declare Function FillPath Lib "gdi32" _
(ByVal hDC As Long) As Long

Private Declare Function GetBkMode Lib "gdi32" _
(ByVal hDC As Long) As Long

Private Declare Function SetBkMode Lib "gdi32" _
(ByVal hDC As Long, ByVal nBkMode As Long) _
As Long

' Background Modes
Private Const TRANSPARENT = 1
Private Const OPAQUE = 2

' Member variables
Private m_Filled As Boolean
Private m_hDC As Long
Private m_OutlineBehind As Boolean
Private m_Outlined As Boolean

' ***
' Public Properties
' ***
Public Property Let Filled(ByVal NewVal As Boolean)

m_Filled = NewVal
End Property

Public Property Get Filled() As Boolean
Filled = m_Filled

End Property

Public Property Let hDC(ByVal NewVal As Long)
m_hDC = NewVal

End Property

Public Property Get hDC() As Long
hDC = m_hDC

End Property

Public Property Let OutlineBehind(ByVal NewVal As _
Boolean)
m_OutlineBehind = NewVal

End Property

Public Property Get OutlineBehind() As Boolean
OutlineBehind = m_OutlineBehind

End Property

Public Property Let Outlined(ByVal NewVal As Boolean)
m_Outlined = NewVal

End Property

Public Property Get Outlined() As Boolean
Outlined = m_Outlined

End Property

' **
' Public Methods
' **
Public Sub DrawText(ByVal Text As String, ByVal X As _

Long, ByVal Y As Long)
Static oldBkMode As Long
Static nRet As Long

If m_hDC Then
oldBkMode = SetBkMode(m_hDC, TRANSPARENT)

' create the path within the DC
Call BeginPath(m_hDC)
Call TextOut(m_hDC, X, Y, Text, Len(Text))
Call EndPath(m_hDC)

If m_Outlined And m_Filled Then
If m_OutlineBehind Then

' first draw the outline, then...
Call StrokePath(m_hDC)
' recreate the path, then...
Call BeginPath(m_hDC)
Call TextOut(m_hDC, X, Y, Text, _

Len(Text))
Call EndPath(m_hDC)
' fill the path.
Call FillPath(m_hDC)

Else
Call StrokeAndFillPath(m_hDC)

End If
ElseIf m_Filled Then

Call FillPath(m_hDC)
ElseIf m_Outlined Then

Call StrokePath(m_hDC)
End If

Call SetBkMode(m_hDC, oldBkMode)
End If

End Sub
Listing 1 You can render text using GDI path functions to create some stunning special effects. This code from the CTextOutline class
draws a string based on various property settings of the class. The GDI Pen, Brush, and Font objects used in the rendering are selected
using standard PictureBox properties.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JULY 1999

VB4/32, VB5, VB6 Get Creative

About the Author

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the Visual Basic
Programmer’s Journal Technical Review and Editorial Advisory
Boards. Online, he’s a Microsoft MVP and a section leader on
several VBPJ forums. Find more of Karl’s VB samples at
www.mvps.org/vb.

DOWNLOAD FREE CODE

Download the code for this issue of VBPJ free from
www.vbpj.com.

To get the free code for this entire issue, click on Locator+, the
right-most option on the menu bar at the top of the home page,
and type VBPJ0799 into the box. (You first need to register, for
free, on DevX.) The free code for this article includes all code
listings, plus a sample containing the CTextOutline class (shown
in Figure 1), and a simple text editor that forces use of a fixed-
pitch font.

 To get the bonus code for this article, available to DevX
Premier Club members, type VBPJ0799AP into the Locator+
field. The bonus code includes all the free code described
above, plus a sample app that includes an extended
CTextOutlineEx class that will optionally create GDI objects for
you and rotate the rendering to any angle.
On Error Resume Next

.ShowFont

If Err.Number = 0 Then

txt.Font.Name = .FontName

txt.Font.Size = .FontSize

End If

End With

End Sub

This approach assumes the user indeed has some fixed-pitch
fonts installed—a fairly solid assumption. You can also use stock
font objects supplied directly by Windows:

Private Sub GetStockFont(txt As TextBox)

Dim hFont As Long

hFont = GetStockObject(ANSI_FIXED_FONT)

Call SendMessage(txt.hWnd, WM_SETFONT, hFont, False)

Call DeleteObject(hFont)

End Sub

I recommend this second route at application startup. Then you
should provide an option for the user to call the common Fonts
dialog to choose another font, and store a reference to this preferred
VBPJ JULY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
font for future runs.

Clone Font to Break Connection
I’ve observed that if I set an object’s Font property to that of

another object’s Font property, any later change to either object’s
Font property affects both. In other words, the two objects share
references to a common Font object. This is well and good in most
cases, but other times I’d like to break this connection—to assign a
clone of another object’s Font property. Is there any way to do this
short of assigning each subproperty (Name, Bold, Size, and so on)
individually?

In fact, yes, there’s an extremely simple method—one that I
include in nearly every project I work on. Look at this:

Function FontClone(fnt As IFont) As StdFont

fnt.Clone FontClone

End Function

The IFont interface is implemented by VB’s StdFont class, so you
can pass any font reference directly to this function. The cloned font
is assigned to the new StdFont class instance, which you passed to
the Clone method of the IFont object. Wrapping this logic up into
a function allows you to clone any Font reference as simple as:

Set Text1.Font = FontClone(Me.Font)

The result is that the two objects’ Font properties refer to
different StdFont objects, so changing one won’t change the other
anymore. This technique can also be especially handy in classes and
user controls that expose a Font property. VBPJ

Q

A

Private Sub Command1_Click()
Dim txt As CTextOutline
Dim char As String

' set up CTextOutline instance
Set txt = New CTextOutline
txt.hDC = Picture1.hDC

' draw an blue-outlined character with shadow
With Picture1

.Cls
char = Chr(Rnd() * 235 + 20)
.CurrentX = (.ScaleWidth - .TextWidth(char)) \ 2
.CurrentY = (.ScaleHeight - .TextHeight(char)) \ 2

.DrawWidth = 2
.ForeColor = vb3DDKShadow
txt.Filled = False
txt.Outlined = True
txt.OutlineBehind = False
txt.DrawText char, .CurrentX + 2, .CurrentY + 2
.ForeColor = vbBlue
txt.DrawText char, .CurrentX, .CurrentY

End With
With MSFlexGrid1

.Row = 1

.Col = 0

.CellPictureAlignment = flexAlignCenterCenter
Set .CellPicture = Picture1.Image

End With
End Sub

Listing 2 Although the API calls are encapsulated behind a class,
lots of settings are available if you want to get really creative with
CTextOutline. This example overlays two renderings of the same
symbol, first creating the shadow effect followed by the actual symbol,
and finally assigning it to a grid cell for display (see Figure 1).
89

