
INTERMEDIATE
ASK THE VB PRO

by Karl E. Peterson

Repair Distorted,
Shrunken Icons

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB Pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or
access a comprehensive
database of previously

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!
to shrink the 32x32 pixel icons assigned to my forms
to the 16x16 pixel representations required for the
titlebar. So I meticulously designed my own 16x16
representations, built dual-resource ICO files, and
assigned these files to the forms’ Icon properties. To
my dismay, VB continued to display the distorted
image of the shrunken 32x32 resource. How can I
persuade VB to use the proper image in the proper
circumstances?

Initially, the results you describe weren’t repro-
ducible on my machine. But after asking around

I found that you were far from alone in your observa-
tions. Something was clearly amiss. After further
testing, and consultation with Microsoft, it became
clear that VB has a bug that exhibits itself under
certain circumstances. There is no simple way to

Q Where’s That Small Icon?
I was disappointed by the way VB uses StretchBlt

A

VBPJ APRIL 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

answered questions.

Universal Coordinated Time
is what used to be called
Greenwich Mean Time. It’s
abbreviated UTC to corre-
spond with the French trans-
lation. Some additional ref-
erences:

ww2.cis.temple.edu/
isworld/all_about_time.htm

www.msmango.com/
time.html

www.kavouras.com/
UTC.htm

www.atmos.washington.edu/
utc.html

pisolo.cstv.to.cnr.it/toi/
uk/utctime.html

RESOURCES
assign a dual-resource icon to a form, and expect it to
be properly displayed.

The bug is not as noticeable when your display is
set to True Color. In this situation, a dual-resource
icon might display properly if constructed in a certain
manner. I found that using the Microsoft Image
Editor—imagedit.exe and imagedit.hlp are found in
the \COMMON\TOOLS\VB\IMAGEDIT folder
on the VB6 CD-ROM—a dual-resource icon could
work if you define the smaller image first, and then
the larger image.

If the icon images are defined in the opposite
order—large first, small second—the larger icon
will always be used in the titlebar. Again, these
results were reproducible only under True Color
settings. If a lower color depth is used by the display,
you can’t convince VB to display the 16x16 icon
from a dual-resource ICO file (see Figure 1). Inter-
estingly, and probably not coincidentally, VB’s
intrinsic Image and PictureBox controls display
similar behaviors. By the way, this isn’t a new bug—
I found it as far back as VB3.

So, what’s the answer? How can you ensure that
your specially designed icons are used properly? Con-
tinue, as before, to assign the dual-resource icon to the
form’s Icon property at design time. This setting
allows Explorer to display the desired image as needed.
Then create a new ICO file that only contains the
16x16 resource. Place an Image control on your form,
set its Visible property to False, and assign this single-
resource ICO to the form’s Icon property during the
Form_Load event:

Private Sub Form_Load()

Set Me.Icon = Image1.Picture

End Sub

With this approach, the titlebar and the taskbar
display the small image, but the Alt-Tab task switcher
displays the large image because that’s what was
assigned to the EXE at compilation. This bug war-
rants Microsoft’s attention in VB7.
Figure 1 Bug Leads to Improper Resource
Selection. VB incorrectly assigns a 32x32 pixel icon
resource, even given a dual-resource ICO file, to a
form’s titlebar in most circumstances. Shown here are
test results under True Color—the best possible
scenario, because VB then uses the smaller resource
if it is definied first in the ICO file. This bug began at least
as early as VB3. Assigning a single-resource ICO,
stored in an Image control, to the form’s Icon property
at run time is the only viable workaround.
85

INTERMEDIATE
ASK THE VB PRO

86
Exposing Global Objects
I’m writing a DLL that exposes some objects. I hoped to expose

an object that worked something like the global Clipboard and
Printer objects, which are used as a class instance but do not need to
be instantiated. However, now I’m stuck with two inferior options:
I can expose a normal class that can be instantiated and used, or
make it global, in which case it is not used like a class but methods
can be invoked simply as global functions. Is there a way to emulate
objects such as the intrinsic Clipboard?

Yes. You need to create an object, setting its Instancing property
to GlobalMultiUse, and expose your global objects from this

class. To demonstrate, I’ve created a project that replicates and
extends the functionality of VB’s intrinsic Clipboard object.

Start a new ActiveX DLL project. Name the default class
CGlobalObjects and set its Instancing property to GlobalMultiUse.
Add a new class to the project, name it CClipboard, and set its
instancing to PublicNotCreatable. During the Initialize event of
CGlobalObjects, instantiate an instance of CClipboard. Add a
public property, named ClipboardEx, to CGlobalObjects which
exposes the CClipboard object (see Listing 1).

The CClipboard class offers all the standard properties and
methods of the intrinsic Clipboard object. Most are mapped
directly to the intrinsic object, but one point of this exercise was
to extend or otherwise modify the default behavior, offering new
and more useful routines to the client application. So the new
object extends the intrinsic by adding Owner and Formats prop-
erties (see Listing 2). Owner returns the window handle of the
current clipboard owner, and Formats returns a read-only collec-
tion object that can be used to enumerate all the formats currently

Q

A

on the system clipboard. The complete code for this example can
be found on The Development Exchange (see the Download Free
Code box for details).

Finding Time Zone Information
How can I find the active time zone offset—from Universal
Coordinated Time (UTC)—to which the computer clock is

set? This value changes when you switch from Standard to Daylight

Q

Continued on page 88.
Listing 1 This is the complete listing of a CGlobalObjects class,
which in turn exposes an internal instance of the CClipboard class.
Instancing for CGlobalObjects is set to GlobalMultiUse, so the
ClipboardEx property is seen as a global object within VB’s name-
space for any project that references the resulting DLL. Client
projects don’t need to refer to the CGlobalObjects class.

Option Explicit

Private m_Clip As CClipboard

' **
' Initialization and Termination
' **
Private Sub Class_Initialize()

Set m_Clip = New CClipboard
End Sub

Private Sub Class_Terminate()
Set m_Clip = Nothing

End Sub

' **
' Exposed Objects
' **
Public Property Get ClipboardEx() As CClipboard

Set ClipboardEx = m_Clip
End Property

Expose a Global ObjectVB5, VB6
Option Explicit

' Private variables
Private m_Fmts As CClipFormats 'PublicNotCreatable

' **
' Initialization and Termination
' **
Private Sub Class_Initialize()

Set m_Fmts = New CClipFormats
End Sub

Private Sub Class_Terminate()
Set m_Fmts = Nothing

End Sub

' **
' Extended Properties
' **
Public Property Get Formats() As CClipFormats

' Expose "New and Improved!" enumeration object.
m_Fmts.Refresh
Set Formats = m_Fmts

End Property

Public Property Get Owner() As Long
' Return window handle of Clipboard owner.
' Useful(?) if conflicts occur.
Owner = GetClipboardOwner()

End Property

' **
' Public Methods
' **
Public Function Clear() As Boolean

' Could map directly to the standard object,
' but here's the API equivalent.
If OpenClipboard(0&) Then

Clear = CBool(EmptyClipboard)
Call CloseClipboard

End If
End Function

Public Function GetFormat(ByVal Format As Long) _
As Boolean

Create an Enhanced Global ClipboardEx ObjectVB5, VB6
Listing 2 This is the complete listing of the CClipboard class, which
is exposed by CGlobalObjects, and provides new and enhanced
functionality over VB’s intrinsic Clipboard object. Most methods
were directly mapped to the intrinsic equivalent. Two methods—
Clear and GetFormat—were coded directly using APIs. And two new
properties, Formats and Owner, were added to provide new features.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ APRIL 1999

A

Savings Time. I have looked in the Win.ini file and my API
reference, but can find nothing.

The GetTimeZoneInformation API offers the information
you need, and more. Pass a variable of the

TIME_ZONE_INFORMATION type to GetTimeZoneInfor-
mation, and inspect the Bias member, the first one returned, for
your specific need. All translations between UTC and local time are
based on this formula:

UTC = local time + bias

The bias is the difference, in minutes, between UTC and local
time. Additionally, you’ll want to factor in either the
StandardBias—0 in most locations—or DaylightBias (–60 in
most locations that observe Daylight Savings Time), depending
on whether it’s currently Standard or Daylight Savings Time. The
return value from GetTimeZoneInformation should alert you to
V

Continued from page 86.

Continued on page 90.
' Could map directly to the standard object,
' but here's the API equivalent.
If OpenClipboard(0&) Then

GetFormat = _
CBool(IsClipboardFormatAvailable(Format))

Call CloseClipboard
End If

End Function

' **
' Mapped Public Methods
' **
Public Function GetData(Optional ByVal Format As Long = _

vbCFBitmap) As Picture
' Map directly to intrinsic object.
On Error Resume Next
Set GetData = Clipboard.GetData(Format)

End Function

Public Function SetData(ByVal NewVal As Picture, _
Optional ByVal Format As Long = _
vbCFBitmap) As Boolean
' Map directly to intrinsic object.
On Error Resume Next
Clipboard.SetData NewVal, Format
SetData = (Err.Number = 0)

End Function

Public Function GetText(Optional ByVal Format As Long = _
vbCFText) As String
' Map directly to intrinsic object.
On Error Resume Next
GetText = Clipboard.GetText(Format)

End Function

Public Function SetText(ByVal NewVal As String, _
Optional ByVal Format As Long = _
vbCFText) As Boolean
' Map directly to intrinsic object.
On Error Resume Next
Clipboard.SetText NewVal, Format
SetText = (Err.Number = 0)

End Function
BPJ APRIL 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
Option Explicit

Private Declare Function GetTimeZoneInformation _
Lib "kernel32" (lpTimeZoneInformation As _
TIME_ZONE_INFORMATION) As Long

Private Type SYSTEMTIME
wYear As Integer
wMonth As Integer
wDayOfWeek As Integer
wDay As Integer
wHour As Integer
wMinute As Integer
wSecond As Integer
wMilliseconds As Integer

End Type

Private Type TIME_ZONE_INFORMATION
Bias As Long
StandardName(0 To 63) As Byte
StandardDate As SYSTEMTIME
StandardBias As Long
DaylightName(0 To 63) As Byte
DaylightDate As SYSTEMTIME
DaylightBias As Long

End Type

Private Const TIME_ZONE_ID_INVALID = &HFFFFFFFF
Private Const TIME_ZONE_ID_UNKNOWN = 0
Private Const TIME_ZONE_ID_STANDARD = 1
Private Const TIME_ZONE_ID_DAYLIGHT = 2

Private Sub Form_Paint()
Dim nRet As Long
Dim tz As TIME_ZONE_INFORMATION

Me.CurrentX = 0
Me.CurrentY = 0
nRet = GetTimeZoneInformation(tz)
If nRet <> TIME_ZONE_ID_INVALID Then

Select Case nRet
Case TIME_ZONE_ID_UNKNOWN

Me.Print "Time Zone Unknown!"
Case TIME_ZONE_ID_STANDARD

Me.Print "Standard Time..."
Case TIME_ZONE_ID_DAYLIGHT

Me.Print "Daylight Savings Time..."
End Select

Me.Print "UTC Bias: "; tz.Bias / 60; " hrs."
Me.Print " ST Zone: "; _

TrimNull(CStr(tz.StandardName))
Me.Print " ST Date: "; tzDate(tz.StandardDate)
Me.Print " ST Bias: "; tz.StandardBias; " mins."
Me.Print " DT Zone: "; _

Understanding the GetTimeZoneInformation APIVB4/32, VB5, VB6
Listing 3 This single API call returns a lot of information. It can be
somewhat difficult to interpret, however. Although much of it is
straightforward, extracting the time and date of switches from
Daylight to Standard, and vice versa, typically involves code to find
the first or last Sunday of a given month in a given year.
87

INTERMEDIATE
ASK THE VB PRO

88

Download the code for this issue of VBPJ free from
www.vbpj.com.

To get the free code for this entire issue, click on Locator+,
the right-most option on the menu bar at the top of the VBPJ
home page, and type VBPJ0499 into the box. (You first need
to register, for free, on DevX.) The free code for this article
includes all code listings, plus the complete ClipboardEx
(global objects) project and a test applet that uses the
enhanced ClipboardEx object.

 To get the bonus code for this article, available to DevX
Premier Club members, type VBPJ0499AP into the Locator+
field. The bonus code includes all the free code described
above, plus fully coded demos showing interpretation of time
zone data and a workaround for the 16x16 icon bug.

DOWNLOAD FREE CODE

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of Visual Basic
Programmer’s Journal Technical Review and Editorial Advisory
Boards. Online, he’s a Microsoft MVP and a section leader on
several VBPJ online forums. Find more of Karl’s VB samples at
www.mvps.org/vb.

About the Author

Continued from page 88.
which setting is in effect.
If, in addition, you’d like to obtain the date/time for switching

between Standard and Daylight Savings Times, these can be ex-
tracted from the returned TIME_ZONE_INFORMATION struc-
ture. Embedded within this structure are two SYSTEMTIME sub-
structures. Windows can use either of two different encoding
methods to return these dates, depending on local tradition.

The absolute method is straightforward. If the wYear member is
not zero, the structure specifies the exact date and time of the switch
from Daylight to Standard (or vice versa) Time. If the wYear
member is zero, the wDayOfWeek member contains the weekday
of the switch, and the wDay member tells the relative week within
the month. In other words, if wDayOfWeek is 0, and wDay is 1,
then you need to determine the date for the first Sunday of the
month specified in the wMonth element. When wDay is 5, this is
interpreted to mean the “last” occurrence of the month. So if
wDayOfWeek is 1 and wDay is 5, your task is to find the last
Monday of the month.

I’ve wrapped this logic up in a function, tzDate, that accepts a
SYSTEMTIME structure and returns the date/time encoded
within it as a serial-date value (see Listing 3). The one thing to
notice as you browse this routine is that the system and VB use
different constant values for the day of the week. Although VB
starts numbering weekdays by assigning 1 to Sunday, 2 to Mon-
day, and so on, the system constants evaluate to one less—0 is
Sunday; 1 is Monday. VBPJ
TrimNull(CStr(tz.DaylightName))
Me.Print " DT Date: "; tzDate(tz.DaylightDate)
Me.Print " DT Bias: "; tz.DaylightBias; " mins."

End If
End Sub

Private Function tzDate(st As SYSTEMTIME) As Date
Dim i As Long
Dim n As Long
Dim d1 As Long
Dim d2 As Long

' This member supports two date formats. Absolute
' format specifies an exact date and time when
' standard time begins. In this form, the wYear,
' wMonth, wDay, wHour, wMinute, wSecond, and
' wMilliseconds members of the SYSTEMTIME structure
' are used to specify an exact date.
If st.wYear Then

tzDate = _
DateSerial(st.wYear, st.wMonth, st.wDay) + _
TimeSerial(st.wHour, st.wMinute, st.wSecond)

' Day-in-month format is specified by setting the
' wYear member to zero, setting the wDayOfWeek member
' to an appropriate weekday, and using a wDay value in
' the range 1 through 5 to select the correct day
' in the month. Using this notation, the first Sunday
' in April can be specified, as can the last Thursday
' October (5 is equal to "the last").
Else
' Get first day of month
d1 = DateSerial(Year(Now), st.wMonth, 1)
' Get last day of month
d2 = DateSerial(Year(d1), st.wMonth + 1, 0)

' Match weekday with appropriate week...
If st.wDay = 5 Then

' Work backwards
For i = d2 To d1 Step -1

If WeekDay(i) = (st.wDayOfWeek + 1) Then
Exit For

End If
Next i

Else
' Start at 1st and work forward
For i = d1 To d2

If WeekDay(i) = (st.wDayOfWeek + 1) Then
n = n + 1 'incr week value
If n = st.wDay Then

Exit For
End If

End If
Next i

End If

' Got the serial date! Just format it and
' add in the appropriate time.
tzDate = i + _

TimeSerial(st.wHour, st.wMinute, st.wSecond)
End If

End Function
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ APRIL 1999

