
INTERMEDIATE
ASK THE VB PRO

by Karl E. Peterson

Ask the VB Pro provides
you with free advice on
programming obstacles,
techniques, and ideas.
Read more answers from
our crack VB Pros on the
Web at www.inquiry.com/
thevbpro. You can submit
your questions, tips, or
ideas on the site, or ac-
cess a comprehensive
database of previously
answered questions.

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!
I’d like to have my application restart automatically
when Windows reboots if the app was running when
the user last shut down Windows. Ideally, it should
behave like Explorer, restoring its state on restart.
How can I implement this feature?

All 32-bit versions of Windows recognize four
special registry entries that support this feature.

Each does essentially the same thing—starts a pro-
gram after the user logs in—but each has its own
special meaning. You can find the two subkeys, Run
and RunOnce, under SOFTWARE\Microsoft\Win-
dows\CurrentVersion in both the HKEY_CUR-
RENT_USER and HKEY_LOCAL_MACHINE
top-level keys.

The Run key is, for all intents, identical to having
a shortcut in the StartUp folder of the Start menu.
The only real difference is that the Run key is harder
for the user to find and edit. Programs listed under
Run start each time the user logs in. The RunOnce
key instructs Windows to run that program only the
next time the user logs in. It is removed from the
registry automatically upon successful execution.

Choice of top-level key is the final factor that
rounds out your implementation. If you place your
entry under HKEY_CURRENT_USER, Windows
starts the program the next time the current user, but
no other user, logs in. Conversely, if you put the entry
under HKEY_LOCAL_MACHINE, Windows starts
the program regardless of who logs in next.

I’ve written a simple routine that takes all these
factors into consideration (see Listing 1). Pass the
RunNextBoot function two to four parameters indi-
cating how you’d like your program to restart. The
AppName parameter is the actual name used for the
registry entry; It doesn’t need to correspond to any-

Q Restart an App That was
Running at Shutdown

A

VBPJ MARCH 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
thing in particular, but should be meaningful to
someone browsing the registry. The CmdLine pa-
rameter is the actual command Windows executes to
start your application. The remaining two optional
parameters, ThisUserOnly and RunEveryBoot, are
Booleans that determine exact placement within the
registry for your new entry.

The ideal place to call RunNextBoot is in the
QueryUnload event of your main form. You can test
the UnloadMode parameter to this event for
vbAppWindows, which indicates your program is
unloading because Windows is shutting down. For
example:

If UnloadMode = vbAppWindows Then

' Windows is shutting down. Store app name

' and command line for execution next boot.

Call RunNextBoot(AppName:="VBPJ QA9903", _

CmdLine:= App.Path & "\" & App.EXEName, _

ThisUserOnly:=True, RunEveryBoot:=False)

Following the call to RunNextBoot, you might
also want to store other values to the registry to
indicate the state your program should resume upon
restart. For example, you might want to stash the
WindowState, position, data file(s) being worked
on, and anything else unique to the current state.
Your app can check these values the next time it
starts, and return the state to where it was when last
shut down.

Employ Single-Instance
UserControls

I’ve written a special-purpose control that absolutely
must be limited to a single instance per form. But VB
has no apparent support for this requirement. I’ll take
whatever slimy hack you can throw my way at this
point. Any ideas?

Q

93

INTERMEDIATE
ASK THE VB PRO

94

I ’ll show you one method that stops

most users dead in their tracks if
they should ignore your warnings.
You’re right. Microsoft doesn’t consider this
need to be worth offering support for. Yet I can

easily envision circumstances when you really want
only a single instance to be used, such as when the
control must subclass its parent form. Granted, you
could document that “Very Bad Things” will happen
if a user should place two or more instances on a form,
but we all get tired of answering “RTFM” to the
plaintive cries of the easily confused, don’t we?

A

It’s Déjà Vu All Over AgainVB5, VB6
Option Explicit
'
' Win32 Registry functions
'
Private Declare Function RegCreateKeyEx Lib _

"advapi32.dll" Alias "RegCreateKeyExA" (ByVal hKey _
As Long, ByVal lpSubKey As String, ByVal Reserved As _
Long, ByVal lpClass As String, ByVal _
dwOptions As Long, ByVal samDesired As Long, _
lpSecurityAttributes As Any, phkResult As Long, _
lpdwDisposition As Long) As Long

Private Declare Function RegSetValueEx Lib _
"advapi32.dll" Alias "RegSetValueExA" (ByVal hKey As _
Long, ByVal lpValueName As String, ByVal Reserved As _
Long, ByVal dwType As Long, lpData As Any, ByVal _
cbData As Long) As Long
' Note that if you declare the lpData parameter as
' String, you must pass it By Value.

Private Declare Function RegCloseKey Lib "advapi32.dll" _
(ByVal hKey As Long) As Long

'
' Constants for Windows 32-bit Registry API
'
Private Const HKEY_CURRENT_USER = &H80000001
Private Const HKEY_LOCAL_MACHINE = &H80000002
'
' Reg Create Type Values...
'
Private Const REG_OPTION_NON_VOLATILE = 0
'
' Reg Key Security Options
'
Private Const SYNCHRONIZE = &H100000
Private Const STANDARD_RIGHTS_ALL = &H1F0000
Private Const KEY_QUERY_VALUE = &H1
Private Const KEY_SET_VALUE = &H2
Private Const KEY_CREATE_SUB_KEY = &H4
Private Const KEY_ENUMERATE_SUB_KEYS = &H8
Private Const KEY_NOTIFY = &H10
Private Const KEY_CREATE_LINK = &H20
Private Const KEY_ALL_ACCESS = ((STANDARD_RIGHTS_ALL Or _

KEY_QUERY_VALUE Or KEY_SET_VALUE Or _
KEY_CREATE_SUB_KEY Or KEY_ENUMERATE_SUB_KEYS Or _
KEY_NOTIFY Or KEY_CREATE_LINK) And (Not SYNCHRONIZE))
Private Const ERROR_SUCCESS = 0&

Private Const REG_SZ = 1 ' Unicode nul terminated string

Public Function RunNextBoot(ByVal AppName As String, _
ByVal CmdLine As String, Optional ThisUserOnly As _
Boolean = False, Optional RunEveryBoot As Boolean = _
False) As Boolean

Dim SubKey As String
Dim TopKey As Long
Dim nRet As Long
Dim hKey As Long
Dim nResult As Long

' Assign subkey string appropriately.
If RunEveryBoot Then

SubKey = _
"SOFTWARE\Microsoft\Windows\CurrentVersion\Run"

Else
SubKey = _

"SOFTWARE\Microsoft\Windows\
CurrentVersion\RunOnce"

End If

' Select appropriate top-level key.
If ThisUserOnly Then

TopKey = HKEY_CURRENT_USER
Else

TopKey = HKEY_LOCAL_MACHINE
End If

' Open (or create and open) key
nRet = RegCreateKeyEx(TopKey, SubKey, 0&, _

vbNullString, REG_OPTION_NON_VOLATILE, _
KEY_ALL_ACCESS, ByVal 0&, hKey, nResult)

If nRet = ERROR_SUCCESS Then
' Write new value to registry
nRet = RegSetValueEx(hKey, AppName, 0&, REG_SZ, _

ByVal CmdLine, Len(CmdLine))
Call RegCloseKey(hKey)

End If
RunNextBoot = (nRet = ERROR_SUCCESS)

End Function
Listing 1 This handy routine writes an application name and command line into either the Run or RunOnce registry entries for either the
current user or all users. Windows uses what you pass to the RunNextBoot function to determine whether and how to restart your
application the next time a user logs in.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ MARCH 1999

VBPJ MARCH 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

VB5, VB6 Forcing a Single Instance

The RunOnce key instructs
Windows to run that program only
the next time the user logs in.
So I’ll show you one method that stops most users dead in their
tracks if they should ignore your warnings. It’s not without its own
perils, so consider your use of it carefully. In short, if you raise an
error during either the InitProperties or ReadProperties events, the
client app has absolutely no way to trap it. The control instance
currently executing stops dead, as do all other control instances
originating from the same module.

Call the code in EnforceSingleInstance from both InitProper-
ties—for new controls—and ReadProperties—for controls pasted
from the clipboard (see Listing 2). EnforceSingleInstance loops the
Controls collection of the UserControl’s Parent, counting the
number of instances of the SingleUse type control. Note that, in this
case, SingleUse is the name of the control and has no other inherent
meaning. EnforceSingleInstance raises an error as soon as your
control encounters a second instance.

At this point, the function redraws the original instance with
diagonal lines over it, indicating it’s no longer functional. The
second instance is never drawn. The code in the OCX is totally
nonresponsive. It’s good if the user edits the form in the IDE. The
only way for a user to regain response from the OCX is to close, then
reopen, the form designer or run the application.

If a user attempts to add a second instance while the OCX is in
limbo, funny things start to happen. The second instance actually
appears on the form, but the error will be raised when the app is
started. If the form designer is closed with two instances in place—
one alive, the other dead—no one can open it again without editing
the FRM file manually.

Hope this one’s slimy enough for you. VBPJ
Download the code for this issue of VBPJ free from
www.vbpj.com.

To get the free code for this entire issue, click on Locator+,
the right-most option on the menu bar at the top of the VBPJ
home page, and type VBPJ0399 into the box. (You first need
to register, for free, on DevX.) The free code for this article
includes all code listings, plus the MRunOnce module, a
sample control that allows only one instance of itself per form.

 To get the bonus code for this article, available to DevX
Premier Club members, type VBPJ0399AP into the Locator+
field. The bonus code includes all the free code described
above, plus a class that emulates VB’s intrinsic registry
functions without the restriction on where entries may be
placed, and a demo that ties this together with the
RunNextBoot routine.

DOWNLOAD FREE CODE

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of Visual Basic
Programmer’s Journal Technical Review and Editorial Advisory
Boards. Online, he’s a Microsoft MVP and a section leader on
several VBPJ online forums. Find more of Karl’s VB samples at
www.mvps.org/vb.

About the Author
Listing 2 By raising an error during either the InitProperties or
ReadProperties events of a UserControl, you effectively prevent the
control from finishing its initialization. In fact, all instances of this
control type are rendered dead at that point. The client has no way
to trap such an error, so this is a measure to be taken only in extreme
circumstances.

Option Explicit

Private Sub UserControl_InitProperties()
Call EnforceSingleInstance

End Sub

Private Sub UserControl_ReadProperties(PropBag As _
PropertyBag)
Call EnforceSingleInstance

End Sub

Private Function EnforceSingleInstance() As Boolean
Dim n As Long
Dim cntl As Control

' Make sure Parent property is valid.
On Error GoTo BailOut

n = UserControl.Parent.Controls.Count
On Error GoTo 0
n = 0

' Check to see how many instances of this control
' type (SingleUse, in this case) exist on Parent.
For Each cntl In UserControl.Parent.Controls

If TypeOf cntl Is SingleUse Then
n = n + 1

' Raising an error from InitProperties or
' ReadProperties causes siting to abort.
If n > 1 Then

Err.Raise Number:=vbObjectError + 513, _
Source:="SingleUse.ocx", _
Description:= _
"Only one instance allowed."

EnforceSingleInstance = True
Exit For

End If
End If

Next cntl
BailOut:
End Function
95

