
ASK THE VB PRO

http://www.windx.com

I N T E R M E D I A T E

Copy and Paste
with RichTextBox

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency
and serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. Coauthor of Vi-
sual Basic 4 How-To from Waite Group
Press, Karl’s a Microsoft MVP online, and a
section leader in both VBPJ online forums.
Contact Karl at karl@rtc.wa.gov.

 Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, or ideas on the site,
or mail them to Ask the VB Pro, c/o Fawcette
Technical Publications, 209 Hamilton Av-
enue, Palo Alto, CA 94301-2500, USA.

b y K a r l E . P e t e r s o n

Click & Retrieve
Source

CODE!

CODING A RICHTEXTBOX EDIT MENU
It’s easy to code Cut, Copy, and Paste routines for a standard text box. For
example, you simply write “Text1.SelText = Clipboard.GetText()” for Paste

code. But when I tried this on a RichTextBox, it didn’t work correctly. Paste didn’t paste
anything and Copy copied twice—“Is this an apple?Is this an apple?”, for example. Is
there a conflict between a TextBox and a RichTextBox, or did I do something wrong?
—Min Kim, Redmond, Washington

A While you don’t say specifically, my hunch is that you’ve included the
standard shortcuts such as Ctrl-C and Ctrl-V on your Edit menu. Unlike the
standard text box, the RichTextBox automatically supports these shortcuts.

This would explain your observation of double cuts, copies, and pastes—your code is
doing it once, and the control might also be doing it if you use the shortcut.

You also need to account for another difference: the default format used by the
Clipboard’s GetText method is vbCFText. If you want to preserve the formatting (why
else use a RichTextBox?), you must specify that with vbCFRTF:

RichTextBox1.SelRTF = Clipboard.GetText(vbCFRTF)

Strangely, Microsoft didn’t support this format with the Clipboard’s GetData method.
You get an “Invalid Clipboard Format” error if you attempt to use this code:
Code Edit Menus Using SendMessage. Using the SendMessage API allows a
single routine to support edit functions for either a standard text box or a rich

text box, as well as provide Undo support that VB doesn’t offer. You can download this
demo from the free, Registered Level of DevX.

FIGURE 1
Visual Basic Programmer’s Journal DECEMBER 1997 99

ASK THE VB PRO

I N T E R M E D I A T E
RichTextBox1.SelRTF = Clipboard.GetData(vbCFRTF)

Inconsistencies such as this have trained me to use the API
for general clipboard support. I use a standard set of routines to
code an Edit menu for text boxes, and it is a cinch to convert
them to also support rich text boxes. The only extra consider-
ation is the added support RichTextBoxes offer for edit short-
cuts. To avoid this double support, I set the form’s KeyPreview
property to True and then toggle a form-level flag variable in the
form’s KeyDown and FormUp events whenever the user presses
or releases the Control key.

Members of the free, Registered Level of The Development
Exchange can download a complete demo that supports a standard
Edit menu for both types of text boxes (see Figure 1, and the Code
Online box at the end of the column for details on how to download
the demo). In fact, the core idea is equally valid for toolbar buttons,
because you can call the routines from anywhere in your code. You
call a generic routine, EditPerform, with a single parameter specify-
ing what type of edit to perform. EditPerform checks the ActiveControl
to make sure it’s either a TextBox or RichTextBox, then calls the
SendMessage API to request the proper edit (see Listing 1).
100 DECEMBER 1997 Visual Basic Programmer’s Journal
EditPerform skips the call to SendMessage if the ActiveControl is a
RichTextBox and the Control key is depressed.

A major advantage of using SendMessage is that it provides
the Undo support Visual Basic still lacks. Edit controls maintain
a CanUndo flag internally, which you can also query with
SendMessage. Because it’s considered poor form to offer menu
choices that aren’t actually possible, it’s always a good idea to
check this flag before dropping an Edit menu.

You can use another routine in the demo to toggle the
Enabled state of each of the standard menu items (see Listing 2).
The EditMenuToggle routine enables Cut, Copy, and Delete if
the SelLength property is greater than zero; these options
would make no sense if no text were selected. Similarly, if there’s
text on the clipboard, the routine enables the Paste option. Only
Undo availability requires resorting to an API.

HOW VB5 HANDLES DEFAULT PROJECTS
I recently upgraded to VB5 and would like to set the
default new project to automatically include several

files that our team uses as the base for our applications. We have
written a lot of our own classes to facilitate our work, and it
ASK THE VB PRO

'
' Windows API call used to control textbox
'
#If Win16 Then
Private Declare Function SendMessage Lib "User" _

(ByVal hWnd As Integer, ByVal wMsg _
As Integer, ByVal wParam As Integer, lParam _
As Any) As Long

#ElseIf Win32 Then
Private Declare Function SendMessage Lib _

"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal wMsg As Long, ByVal wParam _
As Long, lParam As Any) As Long

#End If
'
' Edit Control Messages
'
Const WM_CUT = &H300
Const WM_COPY = &H301
Const WM_PASTE = &H302
Const WM_CLEAR = &H303
Const WM_UNDO = &H304
#If Win16 Then
Const EM_CANUNDO = &H416 'WM_USER + 22
Const EM_GETMODIFY = &H408 'WM_USER + 8

#ElseIf Win32 Then
Const EM_CANUNDO = &HC6
Const EM_GETMODIFY = &HB8

#End If
'
' Flag to track status of Control key
'
Private m_ControlKey As Boolean

Private Sub Form_KeyDown(KeyCode As Integer, _
Shift As Integer)
'
' Watch for Control key, set flag
'
If KeyCode = vbKeyControl Then

m_ControlKey = True
End If

End Sub

Private Sub Form_KeyUp(KeyCode As Integer, _
Shift As Integer)
'
' Watch for Control key, clear flag
'
If KeyCode = vbKeyControl Then

m_ControlKey = False
End If

End Sub

Private Sub mEdit_Click(Index As Integer)
'
' Call generic routine to perform
' requested action. Same routine could
' be called from a toolbar event.
'
Select Case Index

Case mUndo
EditPerform WM_UNDO

Case mCut
EditPerform WM_CUT

Case mCopy
EditPerform WM_COPY

Case mPaste
EditPerform WM_PASTE

Case mDelete
EditPerform WM_CLEAR

End Select
End Sub

Private Sub EditPerform(EditFunction As Integer)
'
' A "wrapper" function for SendMessage
' Requests function passed in EditFunction
' Beeps if active control is not a textbox
'
If TypeOf Me.ActiveControl Is TextBox Then

Call SendMessage(Me.ActiveControl.hWnd, _
EditFunction, 0, 0&)

ElseIf TypeOf Me.ActiveControl Is RichTextBox _
Then
If m_ControlKey = False Then

Call SendMessage(Me.ActiveControl.hWnd, _
EditFunction, 0, 0&)

End If
Else

Beep
End If

End Sub
Providing Generic Edit Functionality. The SendMessage API call is wrapped into a standalone routine, EditPerform, so
you can call it from menus, toolbars, or anywhere else in the code.LISTING 1
http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. For
details, please see “Get Extra Code in DevX’s Premier Club” in
would be helpful to include these at startup. We had this ability
in VB4, but have not been able to locate it for VB5. In VB4/32, the
default project name was auto32ld.vbp. I’ve found the templates
for VBADDINs and all the ActiveX projects, but have not found
one for a standard EXE. Does this default project exist for VB5,
and if so, where can I find it?
—Jay W. Smith, Bentonville, Arkansas

A VB5 changed the way default projects are handled,
and I think you’ll like the change. You can now
have any number of default projects, stored as tem-

plates under the VB5 folder. Start by putting together all the
elements of what you consider a standard project. These can
include elements such as forms, modules, classes, and controls.
Now save each element in the appropriate folder beneath
the \VB5\Template folder. In other words, save the VBP file
in the \VB5\Template\Projects folder, your forms in
\VB5\Template\Forms, classes in \VB5\Template\Classes,
modules in \VB5\Template\Modules, and so on. Now whenever
you select New Project under the File menu, the dialog that
displays includes your custom project among the types to
choose from. As a bonus, whenever you select Add-Form, Add-
Class, or Add-Module, the forms, classes, and modules you
saved in these special folders appear as choices in the New
dialog. Pretty cool, huh?
http://www.windx.com
HERE’S A QUICKER ROUNDING METHOD
In my column that appeared in the special Windows NT Enter-
prise Development issue [VBPJ Fall 1997], I presented one
method to round up to the next higher multiple of 5. Well, the
day after my issue arrived, the mail started coming in. Several of
you, Shaun Morris of Pixel Translations being the first, sent me
a more efficient algorithm. I’d like to share it with everyone:

Function RoundUpToFives (ByVal n As Long) As Long
RoundUpToFives = ((n + 4) \ 5) * 5

End Function

Here, Shaun uses 4, as it’s 5 minus 1. I agree that this one’s much
simpler to read, and as Shaun put it, “No obscure functions and only
one division.” Speedwise, Shaun’s algorithm smoked—if tested
inline. When I timed the difference of calling standalone functions,
the new approach was only about three times faster. To put that in
perspective, five million calls saved one second on my machine.
Hey, we don’t put our e-mail addresses on these columns for
nothing! Thanks, and keep that feedback coming.
Letters to the Editor.

Copy and Paste with RichTextBox
Locator+ Codes
Listings ZIP file, including a complete demo that supports a standard
Edit menu for both types of text boxes (free Registered Level):
VBPJ1297

 Listings for this article, the demo described above, plus the
complete Clipboard Viewer application and source code (subscriber
Premier Level): AP1297P
Private Sub EditMenuToggle()
If TypeOf Me.ActiveControl Is TextBox Or _

TypeOf Me.ActiveControl Is RichTextBox Then
'
' Determine if last edit can be undone
'
Me.mEdit(mUndo).Enabled = SendMessage_

(Me.ActiveControl.hWnd, EM_CANUNDO, 0, 0&)
'
' See if there's anything to cut, copy,
' or delete
'
Me.mEdit(mCut).Enabled = _

Me.ActiveControl.SelLength
Me.mEdit(mCopy).Enabled = _

Me.ActiveControl.SelLength
Me.mEdit(mDelete).Enabled = _

Me.ActiveControl.SelLength
'
' See if there's anything to paste
'
Me.mEdit(mPaste) = _

Clipboard.GetFormat(vbCFText)
Else

'
' If active control is not a textbox
' then disable all
'
Me.mEdit(mUndo).Enabled = False
Me.mEdit(mCut).Enabled = False
Me.mEdit(mCopy).Enabled = False
Me.mEdit(mPaste).Enabled = False
Me.mEdit(mDelete).Enabled = False

End If
End Sub

Don’t Offer What’s Not Available. You can write
variations on this routine to ensure that when your Edit

menu drops, it accurately reflects what’s actually possible. The
routine uses SendMessage to check the CanUndo flag, and then
checks native VB properties for the other options.

LISTING 2
Visual Basic Programmer’s Journal DECEMBER 1997 101

	Code

