
Visual Studio Magazine Online

Classic VB Corner

Hooking the Mouse
ONLINE ONLY
Subclass multiple controls with a single class module to add the missing
MouseEnter and MouseLeave events.
July 28, 2009 · by Karl E. Peterson

Subclassing in Classic VB has always been a bit of a pain. In fact, it wasn't even
possible until VB5 offered the AddressOf operator to facilitate system callbacks.
Recently, I wrote about the SetWindowSubclass API which offers an incredibly slick
way to hook into any in-process window's message stream. In this article, I'll show
you how to build a class that can provide message processing for multiple controls no
matter their type. If you haven't read the previous article, please do before continuing
here as this article will assume that as pretext.

To illustrate the utility of this method, I chose to fill in a widely recognized gap in
functionality: the lack of MouseEnter and MouseLeave events. Oddly enough, Windows
offers both WM_MOUSELEAVE and WM_MOUSEHOVER notifications, but doesn't offer
a WM_MOUSEENTER message. So it's up to us to recognize this event ourselves,
which can be done by monitoring WM_MOUSEMOVE. When that message arrives for
the first time, we know that the mouse has just entered the hWnd of interest. A static
variable remembers this handle, and is reset when the mouse later leaves the
window.

The only remaining trick is enabling the leave and hover notifications. For this, we call
the TrackMouseEvent API when we first detect the mouse entering a watched window.
We can use this call to tell Windows we want to be notified when the mouse leaves
the window, as well as when it first comes to rest for a given "hover" interval. Raising
a MouseHover event in the latter case allows such things as providing informational
materials, but only after the user brings the mouse to a rest. Here's the whole
message processing scheme:

Private Function IHookXP_Message(ByVal hWnd As Long, _
 ByVal uiMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long, ByVal dwRefData As Long) As Long

 Static hWndLast As Long

 ' Special processing for messages we care about.
 Select Case uiMsg
 Case WM_MOUSEMOVE
 If hWnd <> hWndLast Then
 hWndLast = hWnd 'Set flag
 RaiseEvent MouseEnter(hWnd)
 ' Start tracking for Leave event.
 StartTrackingMouse hWnd, TME_LEAVE Or TME_HOVER
 End If

 Case WM_MOUSEHOVER

http://visualstudiomagazine.com/articles/2009/07/28/hooking-the-mouse.aspx

http://visualstudiomagazine.com/
http://visualstudiomagazine.com/Articles/2009/07/16/Subclassing-the-XP-Way.aspx
http://msdn.microsoft.com/en-us/library/ms645615%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms645613%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms646265%28VS.85%29.aspx

 RaiseEvent MouseHover(hWnd)

 Case WM_MOUSELEAVE
 hWndLast = 0 'Clear flag
 RaiseEvent MouseLeave(hWnd)
 End Select

 ' Pass back to default message handler.
 IHookXP_Message = HookDefault(hWnd, uiMsg, wParam, lParam)
End Function

Private Function StartTrackingMouse _
 (ByVal hWnd As Long, ByVal Flags As Long) As Long
 Dim tme As TRACKMOUSEEVENT_STRUCT
 ' Wrap all the mess into a tidy little procedure.
 With tme
 .cbSize = Len(tme)
 .dwFlags = Flags
 If .dwFlags And TME_HOVER Then
 .dwHoverTime = m_HoverTime
 End If
 .hWndTrack = hWnd
 End With
 ' Return results.
 StartTrackingMouse = TrackMouseEvent(tme)
End Function

Notice that the raised events are passing an hWnd parameter back to the client. As I
mentioned earlier, this class is designed to hook messages for any number of controls.
In fact, here's the code I use to set up the class in Form_Load event of the demo on
my site:

Private WithEvents m_ME As CHookMouseEvents

Private Sub Form_Load()
 ' Start watching for mouse events.
 Set m_ME = New CHookMouseEvents
 m_ME.HoverTime = 1000 'milliseconds
 m_ME.Add Me
 m_ME.Add Text1
 m_ME.Add HScroll1
 m_ME.Add VScroll1
 m_ME.Add Combo1
 m_ME.Add Option1
 m_ME.Add Check1
 m_ME.Add List1
 m_ME.Add Drive1
 m_ME.Add Dir1
 m_ME.Add File1
End Sub

Yeah, it's a form with every one of the visible intrinsic controls included. I've built the
CHookMouseEvents class to function somewhat similarly to a Collection on steroids. In
fact, it's using a native Collection object to store references to all the hooked
windows. The code is simple, and allows great ease of setup:

http://visualstudiomagazine.com/articles/2009/07/28/hooking-the-mouse.aspx

http://vb.mvps.org/samples/HookXP/
http://vb.mvps.org/samples/HookXP/

Private Sub Class_Initialize()
 ' Set defaults
 m_Enabled = defEnabled
 m_HoverTime = defHoverTime
 Set m_Objects = New Collection
End Sub

Public Function Add(obj As Object) As Boolean
 On Error Resume Next
 m_Objects.Add obj, FmtHex(obj.hWnd, 8)
 If Err.Number = 0 Then 'success
 If HookSet(obj.hWnd, Me) Then
 Add = True
 End If
 Else
 Debug.Print Err.Number, Err.Description
 End If
End Function

Public Function Count() As Long
 Count = m_Objects.Count
End Function

Public Function Item(ByVal hWnd As Long) As Object
 On Error Resume Next
 Set Item = m_Objects.Item(FmtHex(hWnd, 8))
End Function

Public Function Remove(obj As Object) As Boolean
 On Error Resume Next
 Remove = UnhookOne(obj.hWnd)
End Function

Obviously, this will only work for objects that expose an hWnd property. The HookSet
procedure called in the Add method was discussed in detail in the previous article. It's
simply a call to SetWindowSubclass that uses an ObjPtr to the IHookXP interface
passed to it as the ultimate destination for the hooked messages. To remove an object
from message processing, we just remove it from the collection and call HookClear
(see previous article) which is a shortcut to RemoveWindowSubclass.

No clean-up is necessary in the form that's hosting all the controls and sinking the
messages raised by CHookMouseEvents. The class handles all the dirty work by
watching for WM_NCDESTROY messages in the IHookXP_Message callback method,
and calling UnhookOne just as it would in the Remove method. The class also takes
care to call UnhookAll in its own Terminate event:

Private Sub Class_Terminate()
 ' Tear down
 Call UnhookAll
 Set m_Objects = Nothing
End Sub

Private Sub UnhookAll()
 Dim obj As Object
 ' Clear existing hook.
 For Each obj In m_Objects
 Call HookClear(obj.hWnd, Me)

http://visualstudiomagazine.com/articles/2009/07/28/hooking-the-mouse.aspx

http://visualstudiomagazine.com/Articles/2009/07/16/Subclassing-the-XP-Way.aspx
http://msdn.microsoft.com/en-us/library/bb762102%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb762094%28VS.85%29.aspx

 Next obj
End Sub

And that's really all there is to it. So, to add this processing to your project, you
simply drop in the three modules I supply (CHookMouseEvents.cls, MHookXP.bas,
IHookXP.cls), declare an instance of CHookMouseEvents using WithEvents, and hand it
the objects you'd like to be notified of mouse activity for.

Adding support for the extra two buttons on five-button mice is also incredibly simple.
Just plug in handlers for three more notifications in your message processor:

Private Function IHookXP_Message(ByVal hWnd As Long, _
 ByVal uiMsg As Long, ByVal wParam As Long, _
 ByVal lParam As Long, ByVal dwRefData As Long) As Long

 Static hWndLast As Long

 ' Special processing for messages we care about.
 Select Case uiMsg
 Case WM_XBUTTONDOWN
 If m_Enabled Then
 RaiseEvent XButtonDown(hWnd, _
 WordHi(wParam), WordLo(lParam), WordHi(lParam))
 End If

 Case WM_XBUTTONUP
 If m_Enabled Then
 RaiseEvent XButtonUp(hWnd, _
 WordHi(wParam), WordLo(lParam), WordHi(lParam))
 End If

 Case WM_XBUTTONDBLCLK
 If m_Enabled Then
 RaiseEvent XButtonDblClick(hWnd, _
 WordHi(wParam), WordLo(lParam), WordHi(lParam))
 End If
 End Select

 ' Pass back to default message handler.
 IHookXP_Message = HookDefault(hWnd, uiMsg, wParam, lParam)
End Function

For each of these notifications, the Button value is stored in the high word of wParam,
and the X/Y mouse coordinates are stored in the low and high words (respectively) of
lParam. I've expanded the HookXP sample on my site to include this new demo of
mouse event processing. To me, the fascinating aspect of this class is how it handles
hooking multiple windows, while taking care of all the "dirty housekeeping" with
what's actually very minimal code.

As always when subclassing with native code, be safe. Unhandled errors can be
deadly. Save before running.

http://visualstudiomagazine.com/articles/2009/07/28/hooking-the-mouse.aspx

http://vb.mvps.org/samples/HookXP

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. View our Privacy Policy.

http://visualstudiomagazine.com/articles/2009/07/28/hooking-the-mouse.aspx

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

