
Visual Studio Magazine Online

Classic VB Corner

Working with Multiple Monitors
ONLINE ONLY
Most of the time it doesn't matter where the user puts your application's windows,
but every now and then you really need to know -- or even decide this for yourself.
March 2, 2009 · by Karl E. Peterson

Multiple monitor setups are becoming increasingly common, and there are occasions
where you'll want to react differently based on which monitor the user places your
application's windows, or even where you'll want to make sure your application is
using specific monitor(s). For instance, I recently saw a newsgroup post that read in
part:

I am writing a VBA program and need to determine the screen resolution of all
the monitors in a 3-screen system. In addition, I need to know if PowerPoint is
on screen one, two or three.

I've also created applications (OK, a screensaver or three) that needed to cover the
entire desktop, all visible monitors included. You've probably seen similar applications.
One of my screensavers shows the same image on all monitors, while another shows
different images on each monitor. In order to do this, or tasks such as the writer
above describes, you need to be able to determine how many monitors there are and
the screen coordinates of each. Knowing the entire desktop coordinates can also be
extremely useful if you just want to cover the whole thing with a single form.

So, why not get right to that first? Multiple-monitor support wasn't offered until
Windows 98 and Windows 2000, so if you're still supporting Windows 95 and/or NT4
you'll always need to code at least two solutions for every situation you intend to
address. The GetSystemMetrics API call has been expanded over the years to include
new built-in functionality as it increases. To determine the number of monitors
present, you need only call that API, asking for SM_CMONITORS. On systems that
don't support this request (there's that pesky Windows 95 again), you'll get back 0, so
the best strategy is to test for >1 to quickly determine your ensuing strategy.

GetSystemMetrics provides the easiest way to retrieve the entire desktop surface
coordinates. On single-monitor systems, you can assume the point 0,0 to be in the
upper-left, and SM_CXSCREEN, SM_CYSCREEN to be in the lower-right. With multi-
monitor systems, you need to make four GetSystemMetrics calls, one for each X and
each Y value. In the case of a screensaver, you likely also want to make your canvas
topmost, so the combined set of calls looks something like this:

' Only go into topmost mode if compiled, or
' else there is no way to debug!
If Compiled() Then
 TopMostFlag = HWND_TOPMOST
Else

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

http://visualstudiomagazine.com/
http://msdn.microsoft.com/en-us/library/ms724385%28VS.85%29.aspx

 TopMostFlag = HWND_NOTOPMOST
End If

' Branch based on number of display monitors.
If GetSystemMetrics(SM_CMONITORS) > 1 Then
 Call SetWindowPos(hWnd, TopMostFlag, _
 GetSystemMetrics(SM_XVIRTUALSCREEN), _
 GetSystemMetrics(SM_YVIRTUALSCREEN), _
 GetSystemMetrics(SM_CXVIRTUALSCREEN), _
 GetSystemMetrics(SM_CYVIRTUALSCREEN), _
 SWP_SHOWWINDOW)
Else
 Call SetWindowPos(hWnd, TopMostFlag, _
 0, 0, _
 GetSystemMetrics(SM_CXSCREEN), _
 GetSystemMetrics(SM_CYSCREEN), _
 SWP_SHOWWINDOW)
End If

If you need to find out information about a specific monitor, and you can point to it
via a window handle or a discrete point or rectangle, there are three API functions
that can be useful: MonitorFromPoint, MonitorFromRect and MonitorFromWindow (I
showed how to use the latter in an earlier column). Each of these functions returns an
hMonitor, which may be passed to GetMonitorInfo for overall screen and work area
coordinates.

The situation becomes more complicated if you want to retrieve coordinates for all
available monitors in the system. In that case, you need to set up an
EnumDisplayMonitors callback. If you're simply interested in discovering monitor
dimensions and positions, pass Null for all but the third parameter, which is a pointer
to the callback function:

' Initiate enumeration of all available displays.
Call EnumDisplayMonitors(0&, ByVal 0&, _
 AddressOf MonitorEnumProc, 0&)

Windows will then call your MonitorEnumProc function once for each monitor present,
and within this procedure you can call GetMonitorInfo to gather a MONITORINFOEX
structure full of information about the given monitor. Given the nature of AddressOf,
you'll need to house this callback in a standard BAS module. I've written up a small
sample (Monitors), which you can download from my Web site, that uses this callback
to build a global collection of CMonitor objects that describe each of the devices
present.

The CMonitor class exposes most of the information available for any given monitor
device. In my design, it instantiates to the provide information for the entire virtual
desktop, and then collects information for a specific device when passed a new Handle
value. Preliminary information is gathered with GetMonitorInfo. Then, another call to

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=2563
http://msdn.microsoft.com/en-us/library/dd162610%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd144901%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd145066%28VS.85%29.aspx
http://vb.mvps.org/samples/Monitors
http://vb.mvps.org/samples/Monitors

EnumDisplayDevice is made to fill a DISPLAY_DEVICE structure with additional
information.

The scenario that's not often discussed is that while
GetSystemMetrics(SM_CMONITORS) returns the actual number of physical monitors
connected, EnumDisplayMonitors fires callbacks for both real and pseudo display
devices. These phantom-like devices are created by applications like NetMeeting, and
are often invisible. The best way to put it is, they're best ignored if you don't have a
good reason not to.

I've found that the two best indicators that I'm dealing with a pseudo device and that
I should just ignore it are found in the DISPLAY_DEVICE.dwStateFlag element. There,
you'll find flags indicating whether the device is attached to the desktop and if it's a
mirroring driver (which can be considered invisible).

In my CMonitor class, the Refresh method is called on instantiation whenever a new
Handle is assigned or at client discretion:

Public Sub Refresh()
 ' Clear cached information store.
 Call ZeroMemory(m_MonitorInfo, Len(m_MonitorInfo))
 Call ZeroMemory(m_DeviceInfo, Len(m_DeviceInfo))

 With m_MonitorInfo
 ' Use all accessible information if running under Win95/NT4.
 If m_MultiSupport = False Then
 .rcMonitor.Right = GetSystemMetrics(SM_CXSCREEN)
 .rcMonitor.Bottom = GetSystemMetrics(SM_CYSCREEN)
 Call SystemParametersInfo(SPI_GETWORKAREA, 0, .rcWork, 0)

 ' Fill in structure for virtual monitor if handle is zero.
 ' No device info associated with virtual screens.
 ElseIf m_hMonitor = 0 Then
 With .rcMonitor
 .Left = GetSystemMetrics(SM_XVIRTUALSCREEN)
 .Top = GetSystemMetrics(SM_YVIRTUALSCREEN)
 .Right = .Left + GetSystemMetrics(SM_CXVIRTUALSCREEN)
 .Bottom = .Top + GetSystemMetrics(SM_CYVIRTUALSCREEN)
 End With
 Call SetVirtualAttributes

 ' Otherwise, use the full MultiMonitor API for info.
 Else
 ' Retrieve information about this display.
 .cbSize = Len(m_MonitorInfo)
 Call GetMonitorInfo(m_hMonitor, m_MonitorInfo)

 ' Retrieve information about this device.
 m_DeviceInfo.cbSize = Len(m_DeviceInfo)

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

http://msdn.microsoft.com/en-us/library/dd162609%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd183569%28VS.85%29.aspx

 Call EnumDisplayDevices(.szDevice(0), 0&, _
 m_DeviceInfo, 0&)
 End If
 End With
End Sub

Where m_MonitorInfo and m_DeviceInfo are module-level variables that represent the
relevant API structures:

Private Type MONITORINFOEX
 cbSize As Long
 rcMonitor As RECT
 rcWork As RECT
 dwFlags As Long
 szDevice(0 To CCHDEVICENAME - 1) As Byte
End Type

Private Type DISPLAY_DEVICE
 cbSize As Long
 szDevice(0 To CCHDEVICENAME - 1) As Byte
 szDeviceString(0 To 127) As Byte
 dwStateFlags As Long
 szDeviceID(0 To 127) As Byte
 szDeviceKey(0 To 127) As Byte
End Type

Private m_MonitorInfo As MONITORINFOEX
Private m_DeviceInfo As DISPLAY_DEVICE

In my design, the collection of CMonitor objects is keyed in the order the system
identifies them in the Display Properties dialog Settings tab. So, if you wanted to
query monitor 1:

Debug.Print Monitors("1").Primary

I use the Key of 0 (zero) for the virtual screen, so if, say, you wanted your form to
cover the entire screen, you could do this:

With Monitors("0")
 .PixelsToTwips = True
 Me.Move .Left, .Top, .Width, .Height
End With

Because VB collections are 1-based, the Index properties are all one off, so you'll need
to be aware of that. Each CMonitor object exposes an Index property (Long) that
replicates the Key used when it was added to the collection. I find this easier to keep
straight in my mind, if it's all 0-based, and this matches how Windows identifies the
monitors as well.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

It takes awhile to become familiar with the vagaries of multi-monitor setups. For a
good background read, I'd recommend this old MSJ article. Be aware that the
coordinates can be, and often are, negative -- it's not at all uncommon for 0,0 to be in
the middle of the virtual desktop. Finally, swing by my Web site and grab the Monitors
sample if you'd like to get started playing with this capability right away.

I'm curious, too, if you're writing new ClassicVB apps -- do you explicitly support or
disavow support for "antique" operating systems, or just sort of close your eyes and
hope none of your users are still using those? In particular, do you go out of your way
to support NT4 and/or Windows 95? Leave me some feedback, here or at my web
site. Thanks!

Oh, one more link to the sample code...

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

http://www.microsoft.com/msj/0697/monitor/monitor.aspx
http://vb.mvps.org/samples/Monitors
http://vb.mvps.org/samples/Monitors
http://vb.mvps.org/samples/Monitors

About the Author
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994
through 2005, until such community contributions were no longer deemed valuable.
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You
can contact him through his Web site if you'd like to suggest future topics for this
column.

1105 Redmond Media Group
Copyright 1996-2009 1105 Media, Inc. See our Privacy Policy.

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=3027

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

