
Visual Studio Magazine Online  

Classic VB Corner  

Got One Right! 
ONLINE ONLY 
Can you name one thing Microsoft designed right the first time? 
December 8, 2008 · by Karl E. Peterson 

Conventional wisdom has it that version 1 of any Microsoft product or idea is really an 
alpha, that version 2 is the beta, and that the safe money rides on version 3. Then, 
following version 3, Microsoft generally proceeds to do its best to upset the success it 
found in that golden release. Here's a trip down memory lane, to one of the most 
durable version 3s ever to come out of Redmond. 

Microsoft Windows 1.0 introduced the concept of INI files, which were used to store 
system configuration information for Windows itself. Almost immediately, people 
recognized the opportunity to tweak Windows behavior by hand-editing these pure 
text files, and "tips and tricks" began appearing in publications like PC Magazine. 
Knowing your way around WIN.INI and SYSTEM.INI was a self-promotion to Office 
Geek. 

The Windows 2.0 SDK was the first to offer a standardized INI file API, providing the 
GetProfileString, WriteProfileString, GetProfileInt and WriteProfileInt functions. 
Graybeards will recall how this limited set of functions encouraged every application 
programmer to use WIN.INI as their configuration information depository. 
Unfortunately, that file became "troublesome" when it grew over 32K, so a better 
solution was needed. 

When the Windows 3.0 SDK was shipped, it included the "private" versions of each of 
the above functions, thus encouraging each application to store its data within its own 
configuration file. Gold! This simple mechanism provided a standardized approach for 
all application developers to store the sort of information that's only available at or 
after installation. The version 1 design was perfect, and the version 3 interface sealed 
the deal. 

An often overlooked side-benefit was how greatly this innovation eased tech support. 
Any user could open an INI file in Notepad, edit its contents while talking to the 
support person, save and try again. Separating application INI files from the system 
INI files meant no risk to the overall system from user tweaks, either. 

The INI file format was somewhat standardized, finally, with the release of the 
Windows for Workgroups 3.11 Resource Kit. Not that Microsoft itself ever really stuck 
to this standard, of course (the prime example being the multitude of device= lines in 
SYSTEM.INI, but then that was the alpha release). You're probably well aware of the 
basic structure -- groupings of named sections each including various parameter-value 
pairs. 

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=2922 

http://visualstudiomagazine.com/
http://en.wikipedia.org/wiki/INI_file
http://www.microsoft.com/technet/archive/wfw/2_ch4.mspx


About this time, I was becoming very active in the MSBASIC forum on CompuServe, 
and INI file access from VB3 was routinely in among top three most frequently asked 
questions. I wrote a little INIFILE.BAS module and posted it as KPINI to that forum. It 
instantly became one of the most downloaded samples there. I updated it a few times 
so it could do just about anything to/with an INI file that one might imagine, including 
accessing all those pesky device= lines in SYSTEM.INI (that was the only one that 
required non-API code) and even added a demo that would iterate any INI file. 

Then, the Win32 API arrived, and Microsoft began encouraging developers to use the 
registry to store application settings. The registry offered better hierarchical structure 
and also supported binary storage. Who didn't see what was coming next? It was as if 
Microsoft didn't learn anything from the earlier WIN.INI mess. The curse of registry 
bloat is still with us, and because of this the only way to get an older machine back to 
its peak performance is to flatten it and rebuild from scratch. 

The current kick is using XML files for anything and everything user-related. Yes, they 
offer better hierarchical options, are easily accessible programmatically and can be 
stored apart from critical system information. But just try walking a relative through 
editing one of these (or the registry!) over the phone. Simplicity, they're not. 

So, 10 years after 32-bit VB4 shipped, I finally reposted a full 32-bit implementation 
of KPINI on my Web site. My solution now offers a class-based, event-driven method 
to explore the contents of any INI file, as well as specific methods to read or write to 
any parameter-value pair within. Given INI files are inherently textual, there also 
needed to be methods that consistently reinterpret values in specific ways. For 
example, the ToBoolean method will return True for any number of possible user ways 
of expressing that: 

Public Function ToBoolean(ByVal EntryValue As String) As Boolean 
  ' Interpret entry as either true or false. 
  Select Case Trim$(UCase$(EntryValue)) 
    Case "YES", "Y", "TRUE", "T", "ON", "1", "-1" 
      ToBoolean = True 
    Case "NO", "N", "FALSE", "F", "OFF", "0" 
      ToBoolean = False 
    Case Else 
      ToBoolean = False 
  End Select 
End Function 

Using CIniFile.cls should become very intuitive with just a few tries. The download 
includes a sample utility that iterates through any INI file pointed to, and the page 
you download it from offers a few more examples. Thousands of folks have found it 
immediately useful in both Classic VB and VBA applications. The 16-bit version is still 
included, for nostalgia's sake. I hope you enjoy it, and would welcome any questions 
or comments about it. 

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=2922 

http://vb.mvps.org/samples/kpINI
http://vb.mvps.org/samples/kpINI
http://vb.mvps.org/samples/kpINI


About the Author  
Karl E. Peterson wrote Q&A, Programming Techniques, and various other columns for 
VBPJ and VSM from 1995 onward, until Classic VB columns were dropped entirely in 
favor of other languages. Similarly, Karl was a Microsoft BASIC MVP from 1994 
through 2005, until such community contributions were no longer deemed valuable. 
He is the author of VisualStudioMagazine.com's new Classic VB Corner column. You 
can contact him through his Web site if you'd like to suggest future topics for this 
column. 
 
1105 Redmond Media Group 
Copyright 1996-2008 1105 Media, Inc. See our Privacy Policy.  

http://visualstudiomagazine.com/columns/article.aspx?editorialsid=2922 

http://visualstudiomagazine.com/columns/columnist.aspx?columnistsid=64
http://vb.mvps.org/
http://redmondmediagroup.com/
http://redmondmediagroup.com/
http://1105media.com/privacy.aspx

