
PROGRAMMING TECHNIQUES

by Karl E. Peterson

CREEPING
VERSION-ITIS

E

M

operating systems. Because the transition from
16-bit to 32-bit has the potential to be much
more traumatic for programmers than the DOS-
to-Windows shift, the time to prepare is now.

As 32-Bit Bucket section leader in VBPJ’s
CompuServe forum, it’s appropriate that my
first tip is how to determine if your applica-
tion is running under Windows NT. While
most APIs work just fine, some will return
strange values or even fail miserably. As
more and more users are discovering the wonders of true 32-bit
multitasking, it’s not too early to begin adopting alternate
strategies to deal with the peculiarities of NT.

Sixteen-bit Visual Basic 3.0 apps run in the Win16-On-Win32
subsystem of NT, which provides a majority of the Win16 API
calls. The Win16 GetWinFlags function returns information about
your machine and its operating mode. To determine if you are
operating in Windows NT, compare the return value from
GetWinFlags with the constant value WF_WINNT. Using the And
operator tests a specific bit. A nonzero result means that bit is
set. The function IsWinNT will return true if NT is running:

' Enter this declaration in the General section
Declare Function GetWinFlags Lib "Kernel" () As Long

Function IsWinNT () As Integer
Const WF_WINNT = &H4000
'
' Use GetWinFlags to test for NT.
'
If GetWinFlags() And WF_WINNT Then

IsWinNT = True
Else

IsWinNT = False
End If

End Function

The GetVersion API is the standard method of determining
the version of Windows that’s running. Since the release of
Windows for Workgroups 3.11, however, this function doesn’t
always return the correct version information.

The VerWin function uses the GetVersion API to retrieve
version information for Windows (see Listing 1). GetVersion
returns a long integer with the Windows version stored in the low
word and the DOS version stored in the high word. Within each
word, the major version is in the low byte, and the minor version
is in the high byte. Rather than messing with floating-point
numbers, the VerWin function returns an integer that equals the
true version number multiplied by 100.

Microsoft decided that Windows for Workgroups 3.11 should
return 3.10. So when Windows appears to be version 3.10, inves-

ver the next year or two, your appli-
cations may find themselves run-
ning in any one of three Microsoft

BE PRE

NEW OP

 SYSTE

TAKING
©1991–1995 Fawcette Technical Publications H O M
tigate further. To confirm that it’s running
under 3.10 or 3.11, VerWin passes USER.EXE
to GetFileVersionInfo, which returns the in-
ternally coded version information for a file.

Many of you are probably using the Win-
dows 95 Beta-3 public prerelease. Because
the Win16 API was written before the new
operating system was called Chicago, it con-
tains no API call to detect the operating
system. By calling the GetVersion API, you
can deduce that Windows 95 is running. When
a Win16 app calls GetVersion, Windows 95
returns 3.95 for the sake of compatibility.

The IsWin95 function tests the return value of VerWin against
395 and returns the results accordingly:

Function IsWin95 () As Integer
'
' Win95 returns 3.95 to Win16 apps because
' returning 4.0 broke too many of them!
'
If VerWin() = 395 Then

IsWin95 = True
Else

IsWin95 = False
End If

End Function

Remember, VerWin returns the version number multiplied
by 100 to avoid floating-point numbers (see Listing 1).

The VerWin function requires splitting a long integer into
individual words, and splitting those words into bytes. Four
functions are invaluable for these purposes (see Listing 2); refer
to the VerWin function to see them in use (see Listing 1). Basic
has always suffered from the lack of an unsigned integer data
type. You can overcome this with a little math, temporarily
shifting a negative integer into the long-integer range before
performing bitwise operations on it.

CALLING WIN32 API FROM VB3
Now that you’ve determined that you’re running under Win-
dows NT or Windows 95, download CALL32.ZIP from the Maga-
zine Library of the VBPJ Forum on CompuServe. This archive
contains a DLL that provides a method for 16-bit Visual Basic
apps to call Win32 API functions.CALL32.DLL was written by
Peter Golde, and it has been placed into the public domain.

PARED!

RATING

S ARE

 OVER.
Karl Peterson is a GIS analyst with a regional transportation
planning agency and a member of the VBPJ Technical Review
Board. Karl has coathored a book that is scheduled for publication
concurrent with the upcoming release of a major programming
language <g>. He’s the 32-Bit Bucket Section Leader for the VBPJ
Forum and a Microsoft MVP in the MSBASIC forum. Contact Karl in
either CompuServe location at 72302,3707.
Visual Basic Programmer’s Journal JULY 1995 113E

PROGRAMMING TECHNIQUES
Hundreds of new API calls are available in Win32. Some
replace system functionality that is no longer available, because
DOS is no longer an underlying layer. Previously, you could
access services in Win16 only by reaching below Windows to
invoke DOS interrupts. Some of the new APIs address this.

The information from GetDriveType has been expanded in
Win32. This function now detects CD-ROM and RAM disks.
To detect free space on a disk, the GetDiskFreeSpace function
returns cluster and sector size, as well as the total number of
clusters for a drive and how many are free.

To use CALL32.DLL with these functions, start a new project,
and place the declarations and constants shown in the General
section of the default form (see Listing 3). Use the Declare32
function to set up a thunking mechanism for the intended 32-bit
API calls. The next two declarations are for those Win32 func-
tions, but they have been modified slightly to work with CALL32.
Note that the Lib argument has been set to “call32.dll.” Also, a
parameter has been added to the end of the call. This ID
parameter identifies which function CALL32 should dispatch.
Declare one persistent ID variable for each Win32 API function
at either the module or global level. You must use this ID,
retrieved upon initialization, whenever the call is made.

In the Form_Load event, or wherever your application is initial-
ized, retrieve a persistent ID from Declare32 for each of the Win32
APIs you intend to call. The parameters to Delcare32 include the
function name, the library where it resides, and a string that indicates
what sort of parameters it expects (one letter for each parameter):

Sub Form_Load ()
'
' Obtain function ID's for Win32 calls
'
idFreeSpace = Declare32("GetDiskFreeSpaceA", _

"kernel32", "ppppp")
idDriveType = Declare32("GetDriveTypeA", "kernel32",

"p")
End Sub

I’ve listed the data types supported in the last parameter (see
Table 1). The Form_Click event initiates a loop that tests drive letters
from A to Z for drive type (see Listing 4). If the program detects a valid
drive, it collects statistics on free and used space and calculates byte
totals. Output is directed to the form. IDs retrieved in Form_Load are
passed with the Win32 calls.

KEYWORD OF THE MONTH: IIF
The IIf function, which you can use to evaluate whether an expres-
sion is true or false, is troublesome because it’s not implemented
in VBRUN300.DLL. For some reason, IIf is found in MSAFINX.DLL—
a separate DLL that programmers often overlook when making
distribution disks. If you use temporary string variables in an IIf

parameter, you’ll probably get a GPF. The
GPF often occurs at the conclusion of the
procedure containing the offense, or even
at apparently random locations, making it
almost impossible to locate the cause:

' Recipe for disaster!
Label1 = IIf(x > 100, "Warning: " & x
& " too high!", _

"In Range: " & x)

IIf doesn’t properly release the handles
of temporary string variables used as one
of its arguments, such as the second and
third arguments I’ve shown. But that alone
does not cause the GPF. If a large string is
114 JULY 1995 Visual Basic Programmer’s Journal ©1991–
allocated and there is not enough contiguous space for it, VB will
try to compact the heap, either immediately or upon exit of the
procedure containing IIf. In either of these situations, a GPF will
occur the next time the program allocates a temporary string
that happens to use the string handle utilized by the IIf function.

The good news is there’s absolutely no compelling reason to
use the IIf function. Use a block if-then-else structure whenever
you’re tempted to use IIf. This approach does not risk a GPF, nor
does it jeopardize your distribution with missing files:

' The *sane* way to do it.
If x > 100 Then

Label1 = "Warning: " & x & " too high!"
Else

Label1 = "In Range: " & x
End If
Retrieving Version Information. The VerWin function
uses GetVersion to retrieve version information. Even if

it appears that version 3.10 is running, check for version 3.11.

LISTING 1

' Enter these declarations in the General section
Declare Function GetVersion Lib "Kernel" () As Long
Declare Function GetFileVersionInfo Lib "VER.DLL" _
(ByVal lpszFileName$, ByVal handle As Any, ByVal _
cbBuf&, ByVal lpvData$) As Integer

Function VerWin% ()
Dim nRet%
Dim Ver$
'
' Use GetVersion to find initial answer, which
' is byte-swapped in the low word of return.
'
nRet = WordLo(GetVersion())
nRet = ByteLo(nRet) * 100 + ByteHi(nRet)
'
' For "compatibility", v3.11 returns v3.10, check it.
'
If nRet = 310 Then

Ver = Space$(255)
nRet = GetFileVersionInfo("user.exe", 0&, _

Len(Ver), Ver)
'
' Find position in Ver$ of "FileVersion" stamp.
'
nRet = InStr(Ver, "FileVersion")
'
' Look just beyond stamp for version string.
'
If Mid$(Ver, nRet + 12, 4) = "3.11" Then

VerWin = 311
Else

VerWin = 310
End If

Else
VerWin = nRet

End If
End Function
TABLE 1

C Data Type Visual Basic Declare Type Declare32Type

int, UINT ByVal Long i
LONG, DWORD ByVal Long i
HANDLE ByVal Long i
WORD, short (not supported by CALL32.DLL) (not supported by CALL32.DLL)
HWND ByVal Long w (i for no 16-bit to 32-bit translation)
LPSTR, LPCTSTR ByVal String p
LPDWORD, LPUINT, int FAR * Long p
LPWORD Integer p

Parameter Type Support in CALL32. The first column shows likely parameters
defined in Win32 API references. The second column shows how these types

translate to a Visual Basic Declare, and the third column shows how each type is defined
for CALL32.DLL in the Declare32 function call.
1995 Fawcette Technical Publications H O M E

PROGRAMMING TECHNIQUES
If you can’t avoid using the IIf function (although it’s certainly
hard to imagine why you couldn't), be absolutely sure to avoid
the use of temporary string variables in its arguments. If you
©1991–1995 Fawcette Technical Publications H O M
don’t, it is highly likely that you will face a general protection
fault. And just as with earthquakes in California, you won’t know
when the “big one” will hit. ■
Function ByteHi% (WordIn%)
'
' Lop off low byte with divide. If less than
' zero, then account for sign bit (adding &h10000
' implicitly converts to Long before divide).
'
If WordIn < 0 Then

ByteHi = (WordIn + &H10000) \ &H100
Else

ByteHi = WordIn \ &H100
End If

End Function

Function ByteLo% (WordIn%)
'
' Mask off high byte and return low.
'
ByteLo = WordIn And &HFF

End Function

Function WordHi% (LongIn&)
'
' Mask off low word then do integer divide to
' shift right by 16.
'
WordHi = (LongIn And &HFFFF0000) \ &H10000

End Function

Function WordLo% (LongIn&)
'
' Low word retrieved by masking off high word.
' If low word is too large, twiddle sign bit.
'
If (LongIn And &HFFFF&) > &H7FFF Then

WordLo = (LongIn And &HFFFF&) - &H10000
Else

WordLo = LongIn And &HFFFF&
End If

End Function

Splitting Words. Windows and other function libraries may pack fields into one return value. These functions can split long
integers into individual words and words into bytes.LISTING 2
' API Declarations
Declare Function Declare32 Lib "call32.dll" (ByVal _
Func As String, ByVal Library As String, ByVal Args _
As String) As Long

Declare Function GetDiskFreeSpace Lib "call32.dll" _
Alias "Call32" (ByVal lpRootPathname As String, _
lpSectorsPerCluster As Long, lpBytesPerSector _
As Long, lpNumberOfFreeClusters As Long, _
lpTotalNumberOfClusters As Long, ByVal id As Long) _
As Long

Declare Function GetDriveType Lib "call32.dll" Alias _
"Call32" (ByVal lpRootPathname As String, ByVal id _
As Long) As Long

' GetDriveType return values
Const DRIVE_UNKNOWN = 0
Const DRIVE_NOTPRESENT = 1
Const DRIVE_REMOVABLE = 2
Const DRIVE_FIXED = 3
Const DRIVE_REMOTE = 4
Const DRIVE_CDROM = 5
Const DRIVE_RAMDISK = 6

' Module-level ID variable for each Win32 API
Dim idFreeSpace As Long
Dim idDriveType As Long

API Declarations for CALL32. Place these declarations and constants in the General section of the default form to build
a test project that uses GetDriveType and GetDiskFreeSpace.LISTING 3
LISTING 4 Getting to the Root of Drive Types. Place this code in the Form_Click event to determine the drive type of each potential disk
on the system. If the program detects a valid drive, it collects the statistics on free and used space and calculates the byte totals.

LISTING 4

Sub Form_Click ()
Dim i& ' loop counter
Dim drv$ ' string parameter for drive
Dim dType& ' long function returns
' longs for disk space function:
Dim dfsSectorsPerCluster&
Dim dfsBytesPerSector&
Dim dfsFreeClusters&
Dim dfsTotalClusters&
' calculated values:
Dim FreeSpace&
Dim TotalSpace&
'
' Clear the form, and loop through the alphabet.
'
Me.Cls
For i = 65 To 90

'
' Construct string used to identify root.
'
drv$ = Chr$(i) & ":\"
Me.Print " "; drv$,
'
' Display type of drive for each letter.
'
dType = GetDriveType(drv$, idDriveType)
Select Case dType

Case DRIVE_UNKNOWN
Me.Print "Cannot be determined."

Case DRIVE_NOTPRESENT
Me.Print "Root directory does not exist."

Case DRIVE_REMOVABLE

Me.Print "Can be removed from the drive.",
Case DRIVE_FIXED

Me.Print "Cannot be removed from the drive.",
Case DRIVE_REMOTE

Me.Print "Remote (network) drive.", ,
Case DRIVE_CDROM

Me.Print "CD-ROM drive.", ,
Case DRIVE_RAMDISK

Me.Print "RAM disk.", ,
End Select
'
' Get and display free/total space.
'
If dType > DRIVE_NOTPRESENT Then

If GetDiskFreeSpace(drv$, dfsSectorsPerCluster, _
dfsBytesPerSector, dfsFreeClusters, _
dfsTotalClusters, idFreeSpace) Then
FreeSpace = dfsBytesPerSector * _

dfsSectorsPerCluster * dfsFreeClusters
TotalSpace = dfsBytesPerSector * _

dfsSectorsPerCluster * dfsTotalClusters
Me.Print Format(FreeSpace, "#,##0"); "/"; _

 Format(TotalSpace, "#,##0"); " _
Bytes Free";

Me.Print " ("; Format(FreeSpace / _
TotalSpace * 100, "0.0"); "%)"

Else
Me.Print "Media missing."

End If
End If

Next i
End Sub
Visual Basic Programmer’s Journal JULY 1995 115E

	Creeping Version-Itis
	Source Code

