
112 SEPTEMBER 1998 Visual Basic Programm

I N T E R M E D I A T E

ASK THE VB PRO

Solve These
Irregular Problems

Karl E. Peterson is a GIS analyst with a regional
transportation planning agency and serves as
a member of the Visual Basic Programmer’s
Journal Technical Review and Editorial Advi-
sory Boards. Based in Vancouver, Wash., he’s
also an independent programming consultant
specializing in ActiveX controls. In addition to
contributing to various journals, Karl coau-
thored Visual Basic 4 How-To from Waite
Group Press. Online, he’s a Microsoft MVP, and
a section leader in several VBPJ online fo-
rums. Find more of Karl’s VB samples at http://
www.mvps.org/vb.

Ask the VB Pro provides you with free
advice on programming obstacles, techniques,
and ideas. Read more answers from our crack
VB pros on the Web at http://www.inquiry.
com/thevbpro. You can submit your ques-
tions, tips, or ideas on the site, or access a
comprehensive database of previously an-
swered questions.

b y K a r l E . P e t e r s o n

Click & Retrieve
Source

CODE!

CREATING A NONRECTANGULAR USERCONTROL
I want to build an ActiveX control, similar to the shape component provided
with VB, to draw five-sided polygons. I have found the Polygon API useful for

drawing these shapes on the UserControl, but when I set the BackStyle of the UserControl
to Transparent, no drawing appears on the control. VB methods alone don’t allow me to
fill the polygon. How can I build a polygon control with a transparent BackStyle?

VB UserControls’ support of transparent backgrounds can be confusing and at
times inconsistent. The trick is to designate a given area of the control you
intend to draw on. You do this using the MaskPicture and MaskColor properties

of the UserControl.
Start by creating a bitmap that represents which area(s) you want opaque and which

area(s) you want transparent. Due to a flaw in Windows 95, this bitmap should be
monochrome, using white for transparent and black for opaque. Assign white as the
MaskColor and this bitmap as the MaskPicture. Now, if the BackStyle is set to Transpar-
ent, areas colored white in the MaskPicture bitmap are invisible (see Figure 1).

This approach is fairly limited, in that you must decide the size and shape of your
controls at design time. A more flexible approach is to generate the MaskPicture
bitmap at run time, allowing the user to resize your control at will. The first step is to
calculate the coordinates of each vertex in the polygon. You’ve probably got this angle
covered, because you’re already passing this information to the Polygon API, but I’ve
worked up a little routine that performs these calculations for any size polygon, having
any number of sides, and at any rotation angle (see Listing 1).

Once you have these coordinates, create a memory device context (DC) and a memory-
based monochrome bitmap. Select the bitmap into the DC, flood the background with
white, then use the Polygon API to draw the polygon in black (see Listing 2).

A

Avoiding the Rectangular Rut. Controls can be just about any shape you can
draw. Pictured here are two polygonal button controls, whose MaskPictures

were generated using the code in Listings 1-3. These buttons, each “sized” to fill half the
form, don’t react to mouse clicks except within their visible areas.

FIGURE 1
er’s Journal http://www.devx.com

I N T E R M E D I A T E

ASK THE VB PRO
The next step: Select the bitmap back out
of the DC and transform it into a standard
OLE picture object (see Listing 3). For more
details on this procedure, see the Microsoft
Knowledge Base article Q161299. Once you
have the bitmap stored in a picture object,
you can delete the memory DC and assign
the control’s MaskPicture property.

I’ve wrapped all this functionality into a
class module, which you can download
from the free, Registered Level of The De-
velopment Exchange (for details, see the
Code Online box at the end of the column).
Using this class requires few steps. Initial-
ize it as your control initializes:

Private Sub UserControl_Initialize()
Set m_Mask = New CPolygonMask
m_Mask.Parent = ObjPtr(Me)

End Sub

And assign a new MaskPicture as needed,
thereafter:

Call m_Mask.RenderMask
UserControl.MaskPicture = m_Mask.Mask

Use these last two steps only when the
size or shape of the polygon changes.

OPENING UP SYSTEM WIZARDS
How would I open up the Add
Printer wizard in VB? I’d like to

offer my users this option directly, not
just give them instructions on how to do
it the “normal” way.

Windows 95 and NT offer a vari-
ety of system wizards and con-
trol panel applets you may find

A

http://www.devx.com
useful to call from your applications. In
most cases, calling them is a simple Shell
call—simple, that is, after you determine
the magic string to call. To fire off this
wizard, do something like:

Call Shell("rundll32.exe shell32.dll,_
SHHelpShortcuts_RunDLL AddPrinter", _
vbNormalFocus)

Don’t put a space after the first comma
in the pathname parameter. I’ve collected
30 or so similar calls that open up most
control panel applets and many system
wizards, and posted them on my Web page.
Feel free to swing by http://www.mvps.org/
vb and hit the Tipsheets link to see them all.

See “Spooling, Shelling, and Hooking”
(VBPJ February 1998) for an explanation of
what’s returned by the Shell function, and
how you can use that to track when the
wizard has completed. The Shell32.zip
sample on my Web site uses several of these
techniques to “shell and wait” in 32-bit VB.

CALCULATING LISTINDEX UNDER
CURSOR
I want my list box to behave like

a menu. As the user moves the cursor
over the list, I’d like the selected item to
move with the cursor. How would I go
about this?

The key to this problem is that
each item in a standard list box is
the same height. If you know that

height (the index value for the topmost
visible item) and the y-coordinate of the
cursor, determining the item under the
cursor boils down to simple math.

A

Visual Basic Pr
You can use the SendMessage API to
request the height, in pixels, of each item
in the list. Send the LB_GETITEMHEIGHT
message to your list box, passing 0 for
both wParam and lParam. The return value
is the height of each item.

The ListBox_MouseMove event passes
the y-coordinate of the cursor using the
same ScaleMode as the form because this
property is not directly exposed by the
list box. You can convert the value re-
turned by SendMessage to the ScaleMode
in effect using the ScaleY method.

When you divide the passed Y value
by the converted item height then add the
TopIndex, you get the item under the
cursor. Finally, ensure that your calcu-
lated ListIndex value doesn’t equal or
exceed the ListCount to avoid errors when
setting the new value:

Private Sub List1_MouseMove(Button As _
Integer, Shift As Integer, X As _
Single, Y As Single)
Dim ItemHeight As Long
Dim NewIndex As Long
With List1

ItemHeight = SendMessage(.hWnd, _
LB_GETITEMHEIGHT, 0, ByVal 0&)

ItemHeight = ScaleY(ItemHeight, _
vbPixels, vbTwips)

NewIndex = .TopIndex + (Y \ _
ItemHeight)

If NewIndex < .ListCount Then
.ListIndex = NewIndex

End If
End With

End Sub

The same technique could be used to
Private Sub PreparePoints()
Dim Angle As Double
Dim Slice As Double
Dim X1 As Long, Y1 As Long
Dim radius As Long
Dim theta As Double
Dim n As Long, i As Long
'
' Some useful constants.
'
Const Pi# = 3.14159265358979
Const DegToRad# = Pi / 180
'
' Calc angle between each point, centerpoint, and
'radius.
'
Slice = 360 / m_Sides
X1 = m_Width \ 2
Y1 = m_Height \ 2
If X1 > Y1 Then

radius = Y1 - 1
Else

radius = X1 - 1
End If
'
' Calculate endpoints for each vertex
'
ReDim m_Pts(0 To m_Sides - 1) As POINTAPI
Angle = 180# - m_Offset
For i = 0 To m_Sides - 1

theta = Angle * DegToRad
m_Pts(i).X = X1 + (radius * (Sin(theta)))
m_Pts(i).Y = Y1 + (radius * (Cos(theta)))
Angle = Angle + Slice

Next i
End Sub
Prepare an Array of Polygon Corner Points. Use this routine to generate an array containing the X, Y coordinates of each
vertex in an n-sided polygon. Inputs—module-level variables, in this case—include the height and width (m_Height,

m_Width), number of sides (m_Sides), and degrees of offset from a vertical orientation (m_Offset). The centerpoint is assumed to be
one-half Width and one-half Height.

LISTING 1
ogrammer’s Journal SEPTEMBER 1998 113

I N T E R M E D I A T E

ASK THE VB PRO

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.vbpj.com. For details,
please see “Get Extra Code in DevX’s Premier Club” in Letters to the Editor.
calculate where to position a dragged item when inserting it into
a list, what options to present in a context menu, or any number
of other situations. A sample project demonstrating this tech-
nique is available on the free, Registered Level of The Develop-
ment Exchange (for details, see the Code Online box at the end of
the column).
Solve These Irregular Problems

Locator+ Codes
Listings for the entire issue, plus a class module for drawing multisided
polygons, plus a sample project demonstrating a technique for moving
selected list-box items with the cursor (free Registered Level): VBPJ0998

 Listings for this article only, the module and sample project de-
scribed above, plus a complete skeleton for a polygonal button control
(subscriber Premier Level): AP0998
Private Sub CreateMask()
Dim hWndScn As Long
Dim hDCScn As Long
Dim hDC As Long
Dim hBmp As Long
' Bitmap stores mask (monochrome)
Dim hBmpPrev As Long
Dim hPenPrev As Long
Dim hBrushPrev As Long
Dim rMask As RECT
'
' Get desktop DC, and create compatable DCs.
'
hWndScn = GetDesktopWindow()
hDCScn = GetDC(hWndScn)
hDC = CreateCompatibleDC(hDCScn)
Call ReleaseDC(hWndScn, hDCScn)
'
' Create mono BMP
'
hBmp = CreateBitmap(m_Width, m_Height, 1, 1, ByVal _

0&)
'
' Select BMP into DC, storing previous bitmap.
'
hBmpPrev = SelectObject(hDC, hBmp)
'
' Flood bitmap with white.
'
rMask.Right = m_Width
rMask.Bottom = m_Height
Call FillRect(hDC, rMask, GetStockObject(WHITE_BRUSH))
'
' Draw polygon in black
'
hPenPrev = SelectObject(hDC, GetStockObject(BLACK_PEN))
hBrushPrev = SelectObject(hDC, GetStockObject(BLACK_BRUSH))
Call Polygon(hDC, m_Pts(0), m_Sides)
Call SelectObject(hDC, hPenPrev)
Call SelectObject(hDC, hBrushPrev)
'
' Remove the new copy of the bitmap.
'
hBmp = SelectObject(hDC, hBmpPrev)
'
' Create a picture object from memory bitmap.
'
Call CreateBitmapPicture(hBmp)
'
' Clean up
'
Call DeleteDC(hDC)

End Sub

Create a MaskPicture on the Fly. This routine uses
the polygon points generated in Listing 1 to paint a black

polygon on a white background. The routine creates the
monochrome bitmap in memory, using an hDC compatible with
the screen. After painting, the routine selects the bitmap out of the
hDC, and deletes the hDC. Before letting the bitmap handle go out
of scope, this routine passes it to the CreateBitmapPicture routine,
which transforms it into a picture object.

LISTING 2
114 SEPTEMBER 1998 Visual Basic Programmer’s Journal
Private Declare Function OleCreatePictureIndirect Lib _
"olepro32.dll" (PicDesc As PicBmp, RefIID As GUID, _
ByVal fPictureOwnsHandle As Long, IPic As IPicture) _
As Long

Private Type PicBmp
Size As Long
Type As Long
hBmp As Long
hPal As Long
Reserved As Long

End Type

Private Type GUID
Data1 As Long
Data2 As Integer
Data3 As Integer
Data4(7) As Byte

End Type

Private Sub CreateBitmapPicture(ByVal hBmp As Long)
Dim pic As PicBmp
Dim IPic As IPicture
Dim IID_IDispatch As GUID
'
' Fill in with IDispatch Interface ID
'
With IID_IDispatch

.Data1 = &H20400

.Data4(0) = &HC0

.Data4(7) = &H46
End With
'
' Fill PicBmp struct with necessary parts
'
With pic

.Size = Len(pic) ' Length of structure

.Type = vbPicTypeBitmap ' Type of Picture

.hBmp = hBmp ' Handle to bitmap

.hPal = 0 ' Handle to palette
␣ ␣ ␣ ␣ ␣ ␣ ␣ ' (may be null)

End With
'
' Clear old instance of picture object.
'
Set m_Pic = Nothing
'
' Create Picture object
'
OleCreatePictureIndirect pic, IID_IDispatch, 1, m_Pic

End Sub

Transform Bitmap Into Picture Object. This routine
converts an in-memory bitmap into a standard OLE picture

object. The resulting object may be assigned to any VB property, such
as MaskPicture, that requires that object type. The handle to the bitmap
is no longer yours after this conversion, and must not be deleted!

LISTING 3
http://www.devx.com

	Code

