
98 JULY 1998 Visual Basic Programmer’s Jo

ASK THE VB PRO

I N T E R M E D I A T E

Handle Strings, Dates,
and Colors

By night, Karl E. Peterson is an independent
programming consultant specializing in
ActiveX controls. By day, he works as Geo-
graphical Information Systems analyst with
a regional transportation planning agency.
Karl coauthored Visual Basic 4 How-To,
from Waite Group Press. Online, he’s a
Microsoft MVP and a section leader in sev-
eral VBPJ online forums. Find more of Karl’s
VB samples at http://www.mvps.org/vb.

Phil Weber is an independent consultant
specializing in Visual Basic and Web site
development. He’s a Microsoft Certified Solu-
tion Developer and Product Specialist. His
contributions to this issue’s column are sub-
liminal. Find more of Phil’s VB tips on his Web
site at http://www.teleport.com/~pweber.

Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, or ideas on the site,
or access a comprehensive database of
previously answered questions.

b y K a r l E . P e t e r s o n a n d P h i l W e b e r

Click & Retrieve
Source

CODE!

PASSING STRINGS BETWEEN INSTANCES
I’ve successfully associated my application’s default data-file extension with
my application, so when a user double-clicks on a data file, my application

automatically launches and opens the file. Now, I’d like to prevent a new instance of my
application from starting each time the user double-clicks on a data file, because it’s
a multiple document interface (MDI) application. I know each new instance is invoked
with the requested file name as a command-line parameter. How can I pass this
information to a previous instance?

One of the best features of 32-bit Windows is that each application operates
entirely within its own virtual memory space. This prevents any application
from messing with the data of any other, as was possible under 16-bit

Windows. However, sometimes simply passing a pointer to your own data space
makes sense, or at least is the simplest way to share data. In this case, the system is
designed to protect you from yourself.

One common workaround to sharing data between applications is using memory-
mapped files [see L.J. Johnson’s Windows Programming column, “The Persistence Of
Memory,” VBPJ July 1996]. This approach is best suited to large amounts of data, used
repeatedly. For one-time passing of data between applications, Win32 introduced
WM_COPYDATA, a new window message that uses the same memory-mapped file
technique but hides the complexity behind a familiar interface. To use this technique,
you need to write code for four tasks:

• Detecting and activating a previous application instance.
• Subclassing your main form and watching for the WM_COPYDATA message.
• Preparing the data for transmission.
• Making sense of the received data.

The first two items in this list have been covered in great detail over the years [see
“Subclass Your Way Around VB’s Limitations” by Karl E. Peterson and Jonathan Wood,
VBPJ September 1995; and Mark Pruett’s Programming Techniques column, “Who Says
You Can’t Write Custom Controls?” VBPJ July 1996). In fact, you can use the
EnumWindows example I wrote about last month [Ask the VB Pro, VBPJ June 1998] to
find a previous instance of your application, or you can take a more straightforward
approach (see Listing 1). For simplicity, the sample code uses the freeware MsgHook
control—available on my Web site at http://www.mvps.org/vb—for subclassing.

The WM_COPYDATA message passes a pointer to a COPYDATASTRUCT structure
in lParam. The structure comprises three elements: the dwData element can be any 32-
bit (Long) data you wish to pass; the cbData element specifies the size in bytes of the
data you’re passing; and the lpData element is a pointer to your data. The code in
Listing 1 shows how to populate these elements using either ANSI or Unicode strings.
VB’s native string format is Unicode, so that approach is far simpler. Remember that
Unicode uses two bytes per character, so be sure to use the LenB function when
assigning cbData. Finally, assign lpData by using the undocumented StrPtr function,
and call SendMessage.

If App.PrevInstance is True in your Form_Load event, call the SendMessageTo
routine. Be sure the caption of your new form has been changed so it doesn’t match
the previous instance’s caption. Pass the sought-after caption and the new com-
mand line (see Command$ in the help file) to SendMessageTo, then unload and exit
the new instance.

A

urnal http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
When your previous instance receives
the WM_COPYDATA message, first ex-
tract the COPYDATASTRUCT structure
from the memory location lParam points
to (see Listing 2). One call to CopyMem
(alias of RtlMoveMemory) accomplishes
this task. Then, prepare a string buffer
one-half the length specified in cbData,
and again call CopyMem to sling the
string data into your buffer. At this point,
you’re free to call your application’s
FileOpen routine or otherwise act on
the received string.

WM_COPYDATA isn’t limited to strings.
Using this message, you can pass any sort
of binary data you wish. Finally, be aware
that App.PrevInstance testing doesn’t
work within the Integrated Development
Environment (IDE), so this sort of code
needs to be debugged as an EXE. Down-
load a sample application on the free,
Registered Level of The Development Ex-
change (see the Code Online box at the
end of this column for details). —K.E.P.

NEED FULL DATE PROPERTY
SUPPORT
I’m writing a user control that re-

quires setting several date properties. Some
Private Declare Function FindWindow Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName As String, ByVal _
lpWindowName As String) As Long

Private Declare Function SetForegroundWindow Lib _
"user32" (ByVal hWnd As Long) As Long

Private Declare Function IsIconic Lib "user32" (ByVal _
hWnd As Long) As Long

Private Declare Function ShowWindow Lib "user32" _
(ByVal hWnd As Long, ByVal nCmdShow As Long) As Long

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hWnd As Long, _
ByVal wMsg As Long, ByVal wParam As Long, _
Param As Any) As Long

' Required for VB4/32:
' Declare Function VarPtr Lib "VB40032.DLL" (lpVar As
' Any) As Long

Private Const WM_COPYDATA = &H4A
Private Const SW_RESTORE = 9

Private Type COPYDATASTRUCT
dwData As Long
cbData As Long
lpData As Long

End Type

Private Sub SendStringTo(ByVal Caption As String, _
ByVal Send As String)
Dim hWnd As Long
Dim cds As COPYDATASTRUCT
'
' Check for MDI form first, if no MDI form is found
' look for regular form. Use the classname just to
' narrow down the potential number of matching
http://www.windx.com
' windows.
'
' Use "ThunderRTMDIForm" for VB4
hWnd = FindWindow ("ThunderRT5MDIForm", Caption)
If hWnd = 0 Then

' Use "ThunderRTForm" for VB4
hWnd = FindWindow ("ThunderRT5Form", Caption)

End If
'
' Activate window to which we're passing data.
'
If hWnd Then

If IsIconic(hWnd) Then
Call ShowWindow(hWnd, SW_RESTORE)

End If
Call SetForegroundWindow(hWnd)

Else
Exit Sub 'no need to continue.

End If

' *** ANSI version -- more work!
' Dim b() As Byte
' b = StrConv(Send, vbFromUnicode)
' cds.cbData = UBound(b) + 1
' cds.lpData = VarPtr(b(0))
' Call SendMessage(hWnd, WM_COPYDATA, Me.hWnd, cds)
' *** End ANSI implementation

' *** UniCode version -- much cleaner!
cds.cbData = LenB(Send)
cds.lpData = StrPtr(Send)
Call SendMessage(hWnd, WM_COPYDATA, Me.hWnd, cds)

' *** End Unicode implementation
End Sub
Passing a String to Another VB App. This routine demonstrates using WM_COPYDATA to pass string data from one VB application
to another. Before calling SendMessage, the routine finds the other VB application and activates it with the help of a few API calls. You

need less code by maintaining the string data as Unicode. VB4/32 users must use the ANSI version, adding a Declare for the VarPtr function.

LISTING 1
Private Sub Msghook_Message(ByVal msg As Long, ByVal wp As Long, _
ByVal lp As Long, result As Long)

Dim cds As COPYDATASTRUCT
Dim Send As String

If msg = WM_COPYDATA Then
CopyMem cds, ByVal lp, Len(cds)

' *** ANSI version -- more work!
' Dim b() As Byte
' ReDim b(0 To cds.cbData - 1) As Byte
' CopyMem b(0), ByVal cds.lpData, cds.cbData
' Send = StrConv(b, vbUnicode)
' *** End ANSI implementation

' *** UniCode version -- much cleaner!
Send = Space$(cds.cbData \ 2)
CopyMem ByVal StrPtr(Send), ByVal cds.lpData, cds.cbData

' *** End Unicode implementation

result = True
End If

End Sub

Receiving a String From Another VB App. The freeware MsgHook control
hooks the WM_COPYDATA message, allowing reception of passed strings. One

call to CopyMem retrieves the COPYDATASTRUCT structure from memory into a local
variable, and another CopyMem call extracts the string. Unfortunately, VB4/32 users must
use the ANSI version.

LISTING 2
Visual Basic Programmer’s Journal JULY 1998 99

ASK THE VB PRO

I N T E R M E D I A T E
A

of my users have complained they don’t like to use the native Date
data type, and they’ve asked me to find a more versatile method to
expose these properties. How can I make these folks happy?

New users of VB should be for- given for being unaware
of the idiosyncrasies some of us old-timers still hold
onto. Long before BASIC offered a Date data type

(going back to the early days of QuickBasic), serial dates were
stored in Double precision variables. Of course, some folks
might also want to use strings as well, especially if users set the
property directly.

I wrote a routine some time ago for handling just such a
situation in one of my controls (see Listing 3). You can use the
Value property Let/Get pair in either a class or a user control; the
pair accepts and returns data using the Variant data type. This
allows a user to pass just about anything, and it’s up to the Let
procedure to interpret what was passed.

Numerics must be validated to ensure they’re within the valid
date range supported by VB. The easiest way to do this is to turn
on error trapping and attempt to convert the input to a date using
Providing Maximum Support for Date Properties.
This Let/Get pair of date-property procedures allows your

users to pass any conceivable date representation to your class or user
control. It’s assumed you’ll use the current date in place of Null input, but
others could be added as well. You can handle Times similarly by using
the fractional portion of the input only, rather than the whole part.

LISTING 3

Private m_DateValue As Double

Public Property Let Value(ByVal NewDate As Variant)
'
' Attempt to make sense of input
'
If IsNumeric(NewDate) Then

' Error-trap for out of range
On Error GoTo BadDateValue

NewDate = CDate(NewDate)
On Error GoTo 0
m_DateValue = CDbl(NewDate)

ElseIf IsNull(NewDate) = True Or NewDate = "" Then
' Default to current date.
m_DateValue = Now

ElseIf IsDate(NewDate) Then
' Works for both String and Date types.
m_DateValue = CDbl(CDate(NewDate))

Else
GoTo BadDateValue

End If
PropertyChanged "Value"
' Update display (or whatever)
Call SetDateValue

Exit Property

BadDateValue:
Err.Raise Number:=errInvalidDate, Source:=ModuleName _

& ".Value", Description:=msgInvalidDate
End Property

Public Property Get Value() As Variant
'
' Return whole portion of stored date value, or Null
' if no stored value.
'
If m_DateTime Then

Value = CDate(Fix(m_DateTime))
Else

Value = Null
End If

End Property
100 JULY 1998 VBPJ http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. For details,
please see “Get Extra Code in DevX’s Premier Club” in Letters to the
Editor.

Handle Strings, Dates, and Colors
Locator+ Codes
Listings for the entire issue, plus a demo that detects and activates a
previous instance, should one exist (free Registered Level): VBPJ0798

 Listings for this article only, the demo described above, plus the
MDI sample that shipped with VB5, reworked to add support for
previous instance detection and activation, as well as passing the
command line to the previous instance (subscriber Premier Level):
AP0798
A

CDate. If the input is either Null or an empty string, it’s your call
on how to handle it. In this case, my routine simply uses Now as
the default value. The IsDate function validates string input.
Interestingly, if a user passes a Date variable to the Value prop-
erty, it too gets validated with the IsDate test. Any input data that
fails these tests raises an error.

TO TURN ON COLOR PALETTE

 DROP-DOWNS, DECLARE

YOUR COLOR PROPERTIES

AS THE TYPE OLE_COLOR.

Because the Let procedure accepts a Variant, Get must also
provide the cached property in this format. I prefer to always
use Double variables to store dates and times, as this is the
native format for VB’s serial dates. Using this format, the date
is stored in the whole portion and the time in the fractional
portion of the variable. —K.E.P.

TURN ON FULL COLOR
PROPERTY SUPPORT
How do I turn on the color palette drop-downs in the

Properties window for my user control? Without these drop-
downs, my work just doesn’t seem professional.

Here’s a simple trick for turning on those drop-downs.
Declare your color properties as the type OLE_COLOR
(see Listing 4). That’s all there is to it. You beg to differ?

Can I please explain all the extra code in that listing? Well, I admit,
supporting this extra capability carries a little extra work when
http://www.windx.com
you actually use the colors your users assign.
VB toggles the high bit of a Long value to indicate that the low

byte represents a system-color constant. Because your users
have access to the system-color palette, you must be prepared to
work with those values. You can translate a VB color constant into
the actual RGB value by first turning off the high bit, then calling
the GetSysColor API.

It’s important you don’t store these translated values in your
control’s PropertyBag, though. If you do, the control can’t adopt
to each user’s system-color settings. Instead, call the
CheckSysColor function, passing the cached color property value
before any calls you might make to graphical API functions:

hBrush = CreateSolidBrush(_
CheckSysColor(m_BackColor))

hPen = CreatePen(PS_SOLID, 0, _
CheckSysColor(m_BackColor))

This approach is straightforward and gives your users the
impression you’re really on top of things. —K.E.P.
Private Const defBackColor = vbWindowBackground
Private m_BackColor As Long

Private Sub UserControl_InitProperties()
m_BackColor = defBackColor

End Sub

Private Sub UserControl_ReadProperties (PropBag As _
PropertyBag)
m_BackColor = PropBag.ReadProperty ("BackColor", _

defBackColor)
End Sub

Private Sub UserControl_WriteProperties (PropBag As _
PropertyBag)
Call PropBag.WriteProperty ("BackColor", _

m_BackColor, defBackColor)
End Sub

Public Property Let BackColor(ByVal NewVal As OLE_COLOR)
m_BackColor = NewVal
PropertyChanged "BackColor"
Call SetColors

End Property

Public Property Get BackColor() As OLE_COLOR
BackColor = m_BackColor

End Property

Public Function CheckSysColor(ByVal Color As Long) _
As Long
Const HighBit = &H80000000
'
' If high bit set, strip, and get system color.
'
If Color And HighBit Then

CheckSysColor = GetSysColor _
(Color And Not HighBit)

Else
CheckSysColor = Color

End If
End Function
Providing Maximum Support for Color Properties. This code illustrates all that’s required for full support of color
properties in your user controls. Using OLE_COLOR as the property type adds support for the drop-down color palette in the

Properties window. Storing the value exactly as received from the user adds support for system-color constants. When using the API for
painting, simply call CheckSysColor with the cached color value.

LISTING 4
Visual Basic Programmer’s Journal JULY 1998 101

	Code

