
http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E

Who’s My Parent?

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls. In addition to
contributing to various journals, Karl coau-
thored Visual Basic 4 How-To, from Waite
Group Press. Online, he’s a Microsoft MVP,
and a section leader in both VBPJ online
forums. Find more of Karl’s VB samples at
http://www.mvps.org/vb.

Ask the VB Pro provides you with free
advice on programming obstacles, tech-
niques, and ideas. Read more answers from
our crack VB pros on the Web at http://
www.inquiry.com/thevbpro. You can sub-
mit your questions, tips, and ideas on the
site, or access a comprehensive database of
previously answered questions.

b y K a r l E . P e t e r s o n

Click & Retrieve
Source

CODE!

REFERRING TO PARENT PROPERTIES
Every now and then it would be convenient to design my objects so they
could refer to the properties of the parent object that instantiated them.

Given that there’s no Extender-type object exposing this Parent property for class
objects—as there is for UserControls—how can I pull this off?

A
That’s a pretty tricky question, or rather a question that has only tricky
answers. A couple different methods can accomplish your goal. Unfortu-
nately, both have drawbacks.

The most straightforward method is simply coding a Parent property directly into
your classes. After instantiating an instance of the class, set the Parent to Me—or
whatever object should act as parent. At this point, the object purists out there must
be howling. Yes, doing this breaks all the “rules” of encapsulation. Yes, you no longer
have “pure” objects. But so what?

The fundamental problem with this scenario is that you’ve now set up a circular
reference; the parent holds a reference to the child, and the child holds a reference to
the parent. And in doing so, you’ve increased the reference count on the parent object.
If the design of your parent object calls for disposing of its objects during its
termination event, you find yourself in a Catch-22 because the Terminate event never
fires as long as the parent reference exists in the child.

Cleaning up this mess requires that you de-couple this relationship before the
parent’s termination. You might set the child’s Parent property to Nothing, thereby
decrementing the parent object’s reference count. Just thinking about what exactly
would trigger this action is enough to drive an application designer crazy.

Another approach is to steal an uncounted reference to the parent object with a
thoroughly slimy hack—the best kind, right? You can use RtlMoveMemory—com-
monly aliased as CopyMem or CopyMemory—to borrow an instance of your parent
object as the need arises. The ideas behind this technique could consume a whole
column (see William Storage’s Programming with Class column, “Managing Dependent
Objects,” VBPJ February 1996). In short, code your Parent Let property to accept a
Long rather than an instance of the parent object. When setting the Parent property,
use ObjPtr(Me) to pass a pointer to the object, rather than just Me, which passes the
actual object.

In the child object, store this pointer in a normal Long variable. When you need to
call a method or set a property of the parent, use CopyMem to assign the stored object
pointer to a locally declared variable of the same type as the parent, call the needed
method, then clear the stolen pointer (see Listing 1). Now your scheme of having the
parent destroy all its objects during termination should work without a hitch.

As a side note, the ObjPtr function isn’t in the VB help files. For obvious reasons,
documenting this function would greatly increase the burden on Microsoft’s VB support
team. Although this support burden is frequently used as a rationale for not providing
powerful language constructs, in this case Microsoft slipped a gem into the product.

SHELLING A SHORTCUT
In Windows 95, when you click on a shortcut icon or an item under the Start
menu, it appears that you are actually activating a Link file (LNK extension)

that runs the program. How can I activate a LNK directly under VB? The Shell function
appears to be unable to run LNK files because it doesn’t recognize a LNK file as an
executable, raising an error instead. Could an API call run the LNK files? I can see
possible advantages to running the LNK file instead of using Shell to run the EXE.
Visual Basic Programmer’s Journal MAY 1998 83

ASK THE VB PRO

I N T E R M E D I A T E

Avoiding a Circular Reference. Here’s the most meager example possible of stealing a reference to a parent object from
within a child object. A form creates an instance of the class, and passes a pointer to itself as the Parent. When your program

calls the class’s SomeMethod method, it copies this pointer into a local object variable, which your program can then use to call methods
on the form. Neglecting to clear this stolen reference is fatal.

LISTING 1
A
Sure; I can see times where this
would be appropriate. You’re
correct that VB’s Shell function

won’t do the job here. What you’re look-
ing for is an old standby—ShellExecute.
84 MAY 1998 Visual Basic Programmer’s Jou
This API is generally used to start the
application associated with any given data
file. For example, passing the URL to an
HTML file causes your default browser to
fire up and load that document.
rnal
In this case, you pass the path and file
name of the shortcut file to ShellExecute
(see Listing 2). Don’t worry about most of
the other parameters for this function,
because they’ll all be overridden by the
setting stored in the shortcut.

PREVENTING FOCUS
I don’t want a certain text box
to appear disabled, but I also

don’t want users to be able to copy infor-
mation from the control onto the clip-
board. So setting the Enabled and/or
Locked properties isn’t what I’m looking
for. Is there an API that prevents a text
box from receiving focus without altering
its appearance?

A
First, to answer your question,
no, there really isn’t an API de-
signed to do what you need. This

column often dwells on API solutions, but
sometimes getting into that mindset can
keep you from using techniques that are
readily available right within VB.

One method I’ve used when I needed
this behavior is to place the text box within
another container control—such as a frame
or picture box—and set the container’s
Enabled property to False. This disables
the text box, but with no change in its
appearance. You can camouflage the con-
tainer control by either setting its border
to None or sizing it to exactly the same
dimensions as the text box.

That said, if you never want to allow
editing with this text box, why not simply
use a label control instead? By setting the
BackColor to vbWindowBackground and
the BorderStyle to “1 – Fixed Single,” a
label control looks virtually identical to a
text box (sans scrollbars, of course).
' **********************************
' Example of code within Parent
' **********************************
Private Sub Form_Click()
Dim cls As Class1
Set cls = New Class1
cls.Parent = ObjPtr(Me)
cls.SomeMethod "Gotcha!"
Set cls = Nothing

End Sub

' **********************************
' Example of code within Child
' **********************************
Private Declare Sub CopyMem Lib "kernel32" Alias _
"RtlMoveMemory" (Destination As Any, Source As Any, _
ByVal Length As Long)
Private m_Parent As Object
Private m_lpParent As Long

Public Property Let Parent(ByVal NewVal As Long)
m_lpParent = NewVal

End Property

Public Sub SomeMethod(ByVal SomeText As String)
If m_lpParent Then

' Steal a reference to the parent object
' by copying a pointer to it into a local
' object variable.
Call CopyMem(m_Parent, m_lpParent, 4)
' Set a meaningless property of the parent,
' just to show it works.
m_Parent.Caption = SomeText
' Finally, clean up the stolen reference.
Call CopyMem(m_Parent, 0&, 4)

End If
End Sub
http://www.windx.com

ASK THE VB PRO

I N T E R M E D I A T E
GETTING A WINDOW HANDLE
I would like to obtain the win-
dow handle for the taskbar clock.

The Spy++ utility shows the class name for
this window as “TrayClockWClass,” but
calling FindWindow on that class name al-
ways returns zero. Where am I going wrong?

A
I’m not sure I even want to knowA exactly why you’re after this win-
dow handle, but your question

provides the opportunity to highlight a
useful, yet little-known, API function. It
might come as a surprise to many that
FindWindow returns the handles of only
top-level windows, and is useless for find-
ing child windows. The first time this
tripped me up; I had to read the docs
several times before whacking my own
forehead when I figured it out.

The Spy++ utility—provided on the VB5
CD—shows that the clock window is a child
of the notification area, also known as the
taskbar tray. The taskbar tray’s class name
is “TrayNotifyWnd,” which is itself a child of
the taskbar, whose class name is
“Shell_TrayWnd.” To obtain the clock’s win-
dow handle, work your way down this hier-
archy, starting with the taskbar.

Use FindWindow only to retrieve the
handle of the taskbar—a top-level win-
dow. From that level down, call
FindWindowEx using the class names you
uncovered with Spy++ (see Listing 3).
FindWindowEx allows you to specify the
handle of the window whose children are
searched as its first parameter. If this
parameter is Null, the search is among
children of the desktop. The second pa-
rameter to FindWindowEx indicates that
the search should begin with the next
child window in ZOrder following that
specified, allowing an iterative search
through all children of any given parent.
If this parameter is Null, the search
begins with the first child window. The
third and fourth parameters are the famil-
iar class name and hWnd, as used with
FindWindow—arguments that specify
what criteria to use in the search.
http://www.windx.com

Code Online
You can find all the code published in this issue
of VBPJ on The Development Exchange (DevX)
at http://www.windx.com. For details, please
see “Get Extra Code in DevX’s Premier Club”
in Letters to the Editor.

Who’s My Parent?
Locator+ Codes
Listings for the entire issue (free Registered
Level): VBPJ0598
Listings for this article only (subscriber Pre-
mier Level): AP0598
Private Declare Function ShellExecute Lib "shell32.dll" _
Alias "ShellExecuteA" (ByVal hwnd As Long, ByVal _
lpOperation As String, ByVal lpFile As String, ByVal _
lpParameters As String, ByVal lpDirectory As String, _
ByVal nShowCmd As Long) As Long

Private Sub Form_Click()
Call ShellLnk("c:\windows\start " & _

"menu\programs\accessories\calculator.lnk")
End Sub

Private Function ShellLnk(ByVal LnkFile As String) As Long
'
' Safe to ignore default directory and show mode
' in call to ShellExecute as those defined in the
' shortcut will take precedence.
'
ShellLnk = ShellExecute(0&, vbNullString, LnkFile, _

vbNullString, vbNullString, vbNormalFocus)
End Function

Shelling a Shortcut. VB’s Shell function doesn’t work with LNK (shortcut)
files, but that’s no reason to think it can’t be done. Calling the ShellExecute API

function against a LNK file achieves the desired result. Don’t worry about most of the
parameters to ShellExecute, because the settings in the shortcut take precedence.

LISTING 2
Private Declare Function FindWindow Lib "user32" Alias _
"FindWindowA" (ByVal lpClassName As String, ByVal _
lpWindowName As String) As Long

Private Declare Function FindWindowEx Lib "user32" _
Alias "FindWindowExA" (ByVal hWnd1 As Long, ByVal _
hWnd2 As Long, ByVal lpsz1 As String, ByVal lpsz2 _
As String) As Long

Private Declare Function GetDC Lib "user32" (ByVal _
hwnd As Long) As Long

Private Declare Function FloodFill Lib "gdi32" (ByVal _
hdc As Long, ByVal x As Long, ByVal y As Long, _
ByVal crColor As Long) As Long

Private Declare Function ReleaseDC Lib "user32" _
(ByVal hwnd As Long, ByVal hdc As Long) As Long

Private Sub Form_Click()
Dim hClock As Long
Dim hClockDC As Long
Dim Buffer As String

hClock = hTrayClock()
hClockDC = GetDC(hClock)
Call FloodFill(hClockDC, 1, 1, vbWhite)
Call ReleaseDC(hClock, hClockDC)

End Sub

Private Function hTrayClock() As Long
Dim hTaskbar As Long
Dim hNotify As Long

hTaskbar = FindWindow("Shell_TrayWnd", vbNullString)
hNotify = FindWindowEx(hTaskbar, 0&, _

"TrayNotifyWnd", vbNullString)
hTrayClock = FindWindowEx(hNotify, 0&, _

"TrayClockWClass", vbNullString)
End Function

Drilling Down from a Top-Level Window. FindWindow works great for top-
level windows, but you must use FindWindowEx to retrieve the handle of child

windows. This example drills down two levels to obtain the handle for the clock that
appears in the taskbar notification area (tray), then fills it with the current brush.

LISTING 3
Visual Basic Programmer’s Journal MAY 1998 85

	Code

